首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to investigate the role of rat high-density lipoprotein (HDL) on adrenal cholesterol accumulation and steroidogenic pathways (corticosteroid, i.e., 21-hydroxysteroid biosynthesis and reductive metabolism of progesterone), newborn rat adrenal cells cultured in serum-free medium were used. Incubation of [4-14C]cholesterol-HDL in serum-free medium compared to those in medium with lipoprotein-deficient serum, in serum-free medium with ACTH compared to those without ACTH, both showed an increase of labelled cholesterol in cells and of labelled 21-hydroxysteroids excreted in medium. Substitution of serum-supplemented medium by serum-free and cholesterol-free medium led to a deep decrease of ACTH-induced steroid biosynthesis with a predominance of 20 alpha-reduced steroids; addition of HDL restored the corticosteroid biosynthesis and decreased the reductive metabolism. Addition of increased concentrations of HDL (7-150 micrograms cholesterol/ml) enhanced, in a saturable fashion, the total cholesterol uptake and the corticosteroid biosynthesis. The total cholesterol accumulation in cells exceeded by 4-fold the steroid production at saturation. The ratio between the two steroidogenic pathways increased up to 40 at saturation in favor of corticosteroids. These results suggest that HDL is at least partly internalized and that probably its constituents contribute greatly to the control of the two different steroidogenic pathways.  相似文献   

2.
We examined the utilization of human low density lipoprotein (LDL)- and high density lipoprotein (HDL)-cholesterol for steroid production in primary monolayer culture cells from adenomas of primary aldosteronism and Cushing's syndrome and an adrenal of nodular hyperplasia of Cushing's syndrome. We compared the data obtained with findings in the case of cultured normal human adrenocortical cells. In the presence of 10(-7) M adrenocorticotropin (ACTH), the addition of either LDL or HDL to the culture medium at a cholesterol concentration of 100 micrograms/ml led to a significant increase in the daily secretion rates of cortisol, dehydroepiandrosterone sulfate (DHEA-S) and aldosterone in the adenoma and nodular hyperplasia cells, as in the normal cells. Although LDL greatly increased the secretion of steroid hormones, no significant difference in steroid secretion following the treatments with LDL and HDL were observed in these cultured cells. The contribution of endogenous cholesterol to steroid production was also high, thereby indicating that the neoplastic transformation did not have untoward effects. Cells from adenomas of primary aldosteronism secreted not only aldosterone, but also cortisol and DHEA-S. The daily secretion rates of these steroids were markedly increased when ACTH was added to the medium. With prolonged exposure to ACTH, however, the rate of aldosterone secretion showed a gradual decrease with the incubation time. This decrease might be due to the impaired conversion of corticosterone to 18-hydroxycorticosterone. In case of adenomas in patients with Cushing's syndrome, the secretion of steroid hormones varied in quantity and quality, depending on the type of plasma cortisol response to the rapid ACTH test in vivo, thereby suggesting that the adrenocortical adenoma of Cushing's syndrome might be divided into two subtypes. These results indicate that human functioning adrenocortical adenoma cells utilize plasma lipoproteins as a source of cholesterol for steroidogenesis during the prolonged stimulation of steroid secretion.  相似文献   

3.
Rat adrenocortical cells take up high density lipoprotein cholesterol for use as steroidogenic substrate. To better understand this unique uptake process, we have first characterized HDL binding. Infusion of human 125I-labeled HDL into rats pretreated with 4-APP demonstrated that the adrenal and ovary accumulate HDL in a saturable fashion in vivo. Subsequent studies using isolated rat adrenocortical cells demonstrated that cellular uptake of HDL is comprised of two events. One event is characterized by reversible membrane binding and is complete by 60 min (t1/2 = 20 min). The second event is marked by irreversible apoprotein accumulation which continues for at least 3 hr. Reversibly bound material exhibits the same apoprotein distribution as unincubated HDL. Irreversible accumulation could not be attributed to internalization or lysosomal accumulation inasmuch as it also occurred with partially purified plasma membranes and was not enhanced by addition of chloroquine. Reversible binding of human HDL3 exhibited a saturable dependence on concentration (Kd = 27 micrograms protein/ml; N = 3.0 X 10(6) sites/cell) similar to that previously reported for rat liver, ovary, and testis. Cell accumulation of HDL decreased by over 80% at 4 degrees C compared to 37 degrees C, did not require calcium, and was not diminished by prior cell treatment with trypsin or pronase. These results indicate that rat adrenocortical cells possess plasma membrane recognition sites for HDL with different properties than those of the LDL receptor. Moreover, adrenal accumulation of HDL apoproteins does not lead to secondary lysosome formation.  相似文献   

4.
The cytochalasins stimulate steroid secretion of Y-1 adrenal tumor cells two-to threefold. The order of potencies is cytochalasin E is greater than D is greater than B, but the maximum response is the the same and always less than with ACTH. Like that with ACTH, the stimulation has a rapid onset, is easily reversible, is inhibited by cucloheximide and aminoglutethimide, and occurs at a stage before pregnenolone. Although the cytochalasin, like ACTH, produce cell rounding, it is shown that this morphological change is not necessarily coupled to steridogenesis. Unlike ACTH, cytochalasin B does not measurably increase cellular levels of cAMP at concentrations that lead to maximal steroidogenesis. The cytochalasin B-induced stimulation of steroidogenesis, unlike the short-term ACTH effect, fails to occur in the absence of serum. This lack of response can be corrected by even low concentrations of human high density lipoproteins (HDL) but not by low density lipoproteins (LDL). We, therefore, propose that cytochalasin B enhances the availability of cholesterol bound to HDL for steroidogenesis by Y-1 adrenal cells.  相似文献   

5.
Summary To define the role of endogenously synthesized cholesterol in the differentiation of adrenocortical cells in primary culture, fetal rat adrenal cells were cultured in the presence of exogenous cholesterol (serum-supplemented medium) or in the absence of it (serum-free medium or lipoprotein-free medium). Ultrastructurally the cells had features of glomerulosa cells: mitochondria were oval or rod shaped with lamellar inner membranes. The amount of smooth endoplasmic reticulum was small, and lipid droplets were few. When the cells were cultured in serum-free medium some intracytoplasmic vacuoles were seen. The undifferentiated zona glomerulosa-like cells secreted low amounts of corticosterone and 18-OH-deoxycorticosterone (18-OH-DOC) in all three media (serum-supplemented medium, serum-free medium, and lipoprotein-free medium). Stimulation of the adrenocortical cells with ACTH induced the ultrastructural features of differentiated zona fasciculata-like cells. Mitochondrial inner membranes were well developed in lipoprotein-free medium, but not in serum-free medium. The amount of intracellular lipids was increased in both media devoid of cholesterol. In the ACTH stimulated cultures the presence of exogenous cholesterol resulted in increased secretions of corticosterone and 18-OH-DOC. In the absence of an exogenous source of cholesterol, the amounts of steroids secreted were only half of that secreted in the presence of serum-supplemented medium. Endogenously synthesized cholesterol is sufficient for the morphologic differentiation of fetal rat adrenocortical cells under ACTH stimulation. However, without exogenously provided cholesterol, the steroid production accounts only for half of the maximal output achieved using serum-supplemented medium. This work was supported by Finnish Culture Foundation.  相似文献   

6.
The sources of cholesterol for steroid hormone production were examined using bovine adrenocortical (BAC) cells in primary culture. The experiments were designed to determine the effects of lipoproteins on cortisol production and the level of BAC cell 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Most studies on BAC cell lipoprotein requirements have been conducted using human low-density lipoprotein (hHDL); none have used the homologous bovine lipoproteins. BAC cells treated with corticotropin (ACTH) in a medium devoid of lipoproteins increased and maintained cortisol production 7- to 20-fold above basal levels. Under such conditions ACTH also increased the rate of HMG-CoA reductase activity. Inhibition of HMG-CoA reductase with mevinolin inhibited cortisol production by 85%, indicating that the cells were using cholesterol synthesized de novo for steroid production. Cortisol production was increased almost 40-fold above basal levels if hLDL (100 micrograms/ml) was included in the incubation medium. Human LDL also suppressed the levels of HMG-CoA reductase in a concentration-dependent fashion. Human HDL was without effect on either BAC cell steroidogenesis of HMG-CoA reductase. Addition of bovine LDL (bLDL) to the incubation medium also caused an increase in cortisol production and inhibited cholesterol synthesis. By contrast to hHDL, bHDL (100 micrograms/ml) increased the ability of BAC cells to produce cortisol production. Bovine HDL (bHDL) also was able to decrease HMG-CoA reductase, but not to the extent caused by hLDL or bLDL. These data demonstrate that bovine adrenal cells can use bHDL as a source of cholesterol for steroid hormone production. These findings may be of particular importance when one considers that in vivo, the bHDL content of bovine serum greatly surpasses the level of bLDL.  相似文献   

7.
Metabolism of high density lipoprotein (HDL) cholesteryl ester (CE) by cultured rat adrenal cells was studied. Addition of [3H]CE-HDL to cells pretreated with adrenocorticotrophin in lipoprotein poor media resulted in a time- and concentration-dependent accumulation of [3H]cholesteryl ester and production of [3H]cholesterol and [3H]corticosterone. HDL-CE metabolism could be described as the sum of a high affinity ([ HDL-cholesterol]1/2 max = 16 micrograms/ml) and low affinity ([ HDL-cholesterol]1/2 max greater than 70 micrograms/ml) process. [3H]Cholesterol was found both intracellularly and in the media. Accumulation of [3H]cholesteryl ester could not be attributed to uptake and re-esterification of unesterified cholesterol since addition of Sandoz 58-035, an inhibitor of acyl coenzyme A:cholesterol acyltransferase, did not prevent ester accumulation. Moreover, addition of chloroquine did not inhibit cholesteryl ester hydrolysis indicating that hydrolysis was not lysosomally mediated. Aminoglutethimide prevented conversion of [3H]CE-HDL to steroid hormones but did not inhibit [3H]cholesteryl ester uptake. Cellular accumulation of [3H] cholesteryl ester exceeded accumulation of 125I-apoproteins 5-fold at 1 h and 35-fold at 24 h indicating selective uptake of cholesteryl ester moiety. We conclude that rat adrenal cells possess a mechanism for selective uptake of HDL cholesteryl esters which provides substrate for steroidogenesis. These results constitute the first direct demonstration that cholesteryl esters in HDL can be used as steroidogenic substrate by the rat adrenal cortex.  相似文献   

8.
Steroid-producing tissues require a continuous supply of cholesterol for hormone synthesis. In the majority of the steroidogenic tissues the cholesterol is imported via the receptor-mediated uptake of lipoproteins, and therefore the influence on the lipoprotein receptors provides an additional level for the regulation of hormone synthesis. Hormones regulating the adrenocortical activity exert both short- and long-term action, and thus they may control the interactions of the major cholesterol delivery particles--low- (LDLs) and high-density lipoproteins (HDLs)--and their receptors in short- and long-term action, possibly modulating the signal transduction in the former case and the number and distribution in the latter. The LDL and HDL pathway and the signal transduction mechanism is briefly reviewed. Data are discussed concerning short- and long-term action of hormones (alpha-MSH and ACTH, respectively) on the HDL3 receptors of isolated adrenocortical cells. Short-term treatment with alpha-MSH and long-term treatment with ACTH increased the binding of HDL3 to zona glomerulosa and fasciculata cells, respectively, while both treatments increased the hormone production in the presence of HDL. The lipoprotein receptors were frequently found on the microvilli of adrenocortical cell membranes.  相似文献   

9.
Rat plasma low- and high-density lipoproteins were labeled with [3H]cholesteryl linoleyl ether and isolated by rate-zonal ultracentrifugation into apolipoprotein B-containing LDL, apolipoprotein E-containing HDL1 and apolipoprotein E-poor HDL2. These fractions were incubated with cultured rat hepatocytes and comparable amounts of all lipoproteins were taken up by the cells. Rat HDL was isolated at d 1.085-1.21 g/ml and apolipoprotein E-free HDL was prepared by heparin Sepharose chromatography. The original HDL and the apolipoprotein E-free HDL were labeled with 125I or with [3H]cholesteryl linoleyl ether and incubated with rat hepatocytes or adrenal cells in culture. The uptake of apolipoprotein E-free [3H]cholesterol linoleyl ether HDL by the cultured hepatocytes was 20-40% more than that of the original HDL. Comparison of uptake of cholesteryl ester moiety (represented by uptake of [3H]cholesteryl linoleyl ether) and of protein moiety (represented by metabolism of 125I-labeled protein) was carried out using both original and apolipoprotein E-free HDL. In experiments in which low concentrations of HDL were used, the ratio of 3H/125I exceeded 1.0. In cultured adrenal cells, the uptake of [3H]cholesteryl linoleyl ether-labeled HDL was stimulated 3-6-fold by 1 X 10(-7) M ACTH, while the uptake of 125I-labeled HDL increased about 2-fold. The ratio of 3H/125I representing cellular uptake was 2-3 and increased to 5 in ACTH-treated cells. The present results indicate that in cultured rat hepatocytes the uptake of homologous HDL does not depend on the presence of apolipoprotein E. Evidence was also presented for an uptake of cholesteryl ester independent of protein uptake in cultured rat adrenal cells and to a lesser extent in rat hepatocytes.  相似文献   

10.
The current studies demonstrate that corticosteroidogenesis can be maintained by primary cultures of bovine adrenocortical cells under lipoprotein-depleted conditions. The cholesterol necessary as substrate for steroid synthesis was found to arise from de novo synthesis within these cells. Adrenocorticotropin (ACTH) increased 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity 5-fold within 12 h after addition to the medium. The increase in activity apparently represented accumulation of enzyme as determined by protein blotting and immunodetection. The predominant immunodetectable species of HMG-CoA reductase from bovine adrenal cells was 97,000 daltons; no higher molecular mass species was detectable. The ACTH induction of HMG-CoA reductase activity could be prevented after inhibition of cholesterol conversion to pregnenolone with clotrimazole. These results are suggestive that ACTH increases adrenocortical cholesterol biosynthesis and HMG-CoA reductase activity after conversion of a cellular pool of cholesterol and/or oxysterol into steroid. The increased rate of cholesterol biosynthesis is then capable of maintaining ACTH-promoted steroid production. This is the first study, in vitro, to demonstrate an ACTH-promoted accumulation of HMG-CoA reductase of adrenocortical cells.  相似文献   

11.
Steroid hormones are synthesized using cholesterol as precursor. To determine the functional importance of the low density lipoprotein (LDL) receptor and hormone-sensitive lipase (HSL) in adrenal steroidogenesis, adrenal cells were isolated from control, HSL(-/-), LDLR(-/-), and double LDLR/HSL(-/-) mice. The endocytic and selective uptake of apolipoprotein E-free human high density lipoprotein (HDL)-derived cholesteryl esters did not differ among the mice, with selective uptake accounting for >97% of uptake. In contrast, endocytic uptake of either human LDL- or rat HDL-derived cholesteryl esters was reduced 80-85% in LDLR(-/-) and double-LDLR/HSL(-/-) mice. There were no differences in the selective uptake of either human LDL- or rat HDL-derived cholesteryl esters among the mice. Maximum corticosterone production induced by ACTH or dibutyryl cyclic AMP and lipoproteins was not altered in LDLR(-/-) mice but was reduced 80-90% in HSL(-/-) mice. Maximum corticosterone production was identical in HSL(-/-) and double-LDLR/HSL(-/-) mice. These findings suggest that, although the LDL receptor is responsible for endocytic delivery of cholesteryl esters from LDL and rat HDL to mouse adrenal cells, it appears to play a negligible role in the delivery of cholesterol for acute adrenal steroidogenesis in the mouse. In contrast, HSL occupies a vital role in adrenal steroidogenesis because of its link to utilization of selectively delivered cholesteryl esters from lipoproteins.  相似文献   

12.
The effects of taxol on steroid production and microtubule polymerization were examined using Y-1 adrenocortical tumor cells, MLTC-1 Leydig tumor cells, and primary cultures of bovine adrenocortical cells. Taxol inhibited the following steroidogenic processes within the Y-1 and MLTC-1 cells: (1) hormonal increase of steroid production, (2) dibutyryl cyclic AMP-increased steroid production, and (3) hormone-stimulated pregnenolone production. The inhibitory action of taxol was concentration dependent and also resulted in an increase in cytoplasmic microtubules. In addition, the inhibitory action of taxol on hormone-stimulated steroid production was reversible. Taxol appeared to inhibit cholesterol movement to the mitochondrial site of cholesterol side-chain cleavage enzyme but did not affect overall protein synthesis. Interestingly, taxol did not affect hormone-stimulated steroid production in bovine adrenocortical cells. This lack of inhibition may correspond to the ultrastructural observation that microtubule bundling after taxol treatment was observed in the tumor cells but not in similarly treated bovine adrenal cells. With this conflicting information between cell types, a direct relationship between taxol treatment and inhibition of steroid production has not been established. However, these results suggest that taxol alters the rate of transport of cholesterol to the cholesterol side-chain cleavage enzyme within the steroidogenic tumor cells.  相似文献   

13.
The present study examined the effects of serum and lipoproteins on the function of cultured adrenal cells from 115-127-day-old ovine fetuses and from newborn lambs. On day 1 of culture, corticosteroid output was similar in medium containing 2% horse serum or in serum-free medium, both for fetal and neonatal cells. However, on day 5, cells cultured in the absence of serum produced smaller amounts of these steroids than cells maintained in medium containing serum; the difference was more marked under ACTH1-24 stimulation. Conversely, cAMP production was never lower in the absence than in the presence of serum. When stimulated by ACTH1-24 on day 2 of culture, fetal or neonatal adrenal cells incubated in the presence of a saturating concentration of ovine LDL produced more corticosteroids than cells incubated in serum-free medium; HDL also enhanced ACTH1-24-induced steroidogenesis, but to a lesser extent. VLDL was effective only with neonatal cells. In fetal and neonatal cells cultured for 6 days in ACTH-free medium, VLDL and LDL increased ACTH-induced steroidogenesis, but HDL did not. On the other hand, when cells were cultured in the presence of ACTH1-24, LDL and HDL were equipotent in supporting ACTH1-24-induced steroid output. Three major lipoprotein fractions were observed in serum of fetal and newborn lambs. The concentration of cholesterol was very low in the VLDL fraction of fetuses, but it was similar to that of newborns in LDL. Conversely, 4 times more cholesterol was present in HDL of newborns than in HDL of fetuses. These results suggest that: (i) after several days of cell culture, cholesterol availability is an important limiting factor for the steroidogenesis of cells maintained under serum-free conditions; (ii) both an "LDL pathway" and an "HDL pathway" are operating in adrenal cells from fetal as well as newborn sheep; (iii) LDL and HDL are important physiological sources of cholesterol to support steroidogenesis by fetal and neonatal adrenal cells.  相似文献   

14.
A novel compound, NO-1886, which possesses a powerful lipoprotein lipase activity-increasing action, induces hypertrophy of adrenals in rats and hyperplasia of cortical cells in dogs. However, these effects were not observed in monkeys. We examined the effects of NO- 1886 on steroid hormone production by adrenocortical cells to clarify its effects on adrenal steroidogenesis. NO-1886 did not inhibit the steroid synthetic enzymes, including 3beta-hydroxysteroid dehydrogenase, 21-hydroxylase, 11beta-hydroxylase, or cholesterol side-chain cleavage enzymes. However, NO-1886 affected steroid production from adrenocortical cells in rats, dogs, monkeys, and humans in in vitro studies. These effects were almost completely reversed by the addition of 25-hydroxycholesterol or low-density lipoproteins to the reaction medium, but not reversed by the addition of high-density lipoproteins. These results suggest that NO-1886 affects the cholesterol pathways within the adrenocortical cells and inhibits steroidogenesis, causing a reduction of steroid hormone release from adrenocortical cells and resulting in hypertrophy of adrenals via feed-back mechanisms. However, its effect is not apparent in animals that use low-density lipoproteins as a source of adrenocortical steroidogenesis.  相似文献   

15.
In previous studies we demonstrated that peripheral-type benzodiazepine receptors (PBR) were coupled to steroidogenesis in several adrenocortical and Leydig cell systems (Mukhin, A.G., Papadopoulos, V., Costa, E., and Krueger, K.E. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9813-9816; Papadopoulos, V., Mukhin, A.G., Costa, E., and Krueger, K.E. (1990) J. Biol. Chem. 265, 3772-3779). The current study elucidates the specific step in the steroid biosynthetic pathway by which PBR mediate the stimulation in steroid hormone production. The adrenocorticotropin (ACTH)-responsive Y-1 mouse adrenocortical cell line was used to compare the mechanisms by which ACTH and PK 11195 (a PBR ligand) stimulate steroidogenesis. The effects of these agents were studied at three stages along the steroid biosynthetic pathway: 1) secretion of 20 alpha OH-progesterone by Y-1 cell cultures; 2) pregnenolone production by isolated mitochondrial fractions; 3) quantities of cholesterol resident in outer and inner mitochondrial membrane fractions. Steroid synthesis stimulated by ACTH was blocked by cycloheximide, an effect documented by other laboratories characterized by an accumulation of mitochondrial cholesterol specifically in the outer membrane. In contrast, PK 11195-stimulated steroidogenesis was not inhibited by cycloheximide, and the magnitude of the stimulation was markedly enhanced when the cells were pretreated with cycloheximide and ACTH. When isolated mitochondria were used, stimulation of pregnenolone production by PK 11195 was largely independent of exogenously supplied cholesterol, indicating that PBR act on cholesterol already situated within the mitochondrial membranes. This phenomenon was found to be the result of a translocation of cholesterol from outer to inner mitochondrial membranes induced by the PBR ligand. These studies therefore suggest that mitochondrial intermembrane cholesterol transport in steroidogenic cells is mediated by a mechanism coupled to PBR.  相似文献   

16.
The roles of human low density lipoprotein (LDL)- cholesterol and high density lipoprotein (HDL)- cholesterol on adrenal steroidogenesis were investigated using cultured human adult and fetal adrenocortical cells and the findings were then compared to those obtained with bovine adrenocortical cells. The secretion of cortisol in both human and bovine adrenocortical cells was dose-dependently increased by the administration of LDL- or HDL-cholesterol in the presence of adrenocorticotropin (ACTH). LDL-cholesterol was utilized to a greater extent than HDL-cholesterol in both human and bovine adrenal steroidogenesis in the presence of ACTH. Exogenous lipoprotein-derived cholesterol was less utilized in human adrenal steroidogenesis than in bovine adrenal steroidogenesis, compared to the endogenous cholesterol. An increase in the secretion of cortisol and dehydroepi androsterone sulfate (DHEA-S) continued for the 5-day culture period, in the presence of lipoprotein cholesterol and ACTH in both human adult and fetal adrenocortical cells. The secretion of aldosterone increased on the first day of the culture period, then gradually decreased for the 5-day culture period in human adult adrenocortical cells, but not in human fetal adrenocortical cells in the presence of lipoprotein cholesterol and ACTH. These findings demonstrate that exogenous cholesterol utilized in the biosynthesis of steroids is mainly from LDL-cholesterol in both human adult and fetal adrenals and bovine adrenal and the proportion of cholesterol synthesized de novo is significantly larger in the human adult adrenal than in the bovine adrenal.  相似文献   

17.
Summary The morphology and function of isolated inner (zona fasciculata/reticularis) adrenocortical cells of rats pretreated with ACTH for 3, 6, 9 or 12 days were investigated. ACTH treatment induced a notable time-dependent enhancement in the steroidogenic capacity (corticosterone production) and growth of inner cells. The volumes of cells, mitochondrial compartment, membrane space [the cellular space occupied by smooth endoplasmic reticulum (SER) membranes] and lipid-droplet compartment, as well as the surface area of mitochondrial cristae and SER tubules, were increased in relation to the duration of ACTH pretreatment, and showed a highly significant positive linear correlation with both basal and stimulated corticosterone production. The acute exposure of isolated cells to ACTH provoked a striking lipid-droplet depletion, the extent of which was linearly and positively correlated with stimulated corticosterone secretion. The hypertrophy of the mitochondrial compartment and SER are interpreted as the morphological counterpart of the enhanced steroidogenic capacity of inner adrenocortical cells, inasmuch as the enzymes of steroid synthesis are located in these two organelles, and it is well known that chronic ACTH exposure stimulates the de novo synthesis of many of them in vivo. The rise in the number of lipid droplets, in which cholesterol is stored, is interpreted as being due to the fact that, under chronic ACTH treatment, the processes leading to cholesterol accumulation in adrenocortical cells (exogenous uptake and endogenous synthesis) exceed those of its utilization in basal steroid secretion. Cholesterol accumulated in lipid droplets as a reserve material may be rapidly utilized after acute ACTH exposure to meet the needs of the enhanced steroidogenic capacity of adrenocortical cells.  相似文献   

18.
Electron microscopic studies of perfused rat adrenals indicate that plasma lipoproteins become concentrated in a specialized cell surface compartment called microvillar channels. Closely associated plasma membranes of sinusoidal microvilli of zona fasciculata cells form channels that normally are filled with electron dense particles the size of high density lipoproteins (HDL). In rats made acutely deficient in plasma lipoproteins (by treatment with 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) for 1 day), particles within the microvillar channels are decreased in number. When adrenal glands of these rats are perfused with media lacking plasma lipoproteins, many but not all of these HDL-like particles are washed out. However, when these adrenals are perfused with large amounts (100-500 micrograms protein/ml) of HDL, microvillar channels become packed with electron dense particles similar to those found in vivo. These microvillar channels become wider and filled with larger particles when low density lipoproteins (LDL) are perfused through the adrenals. Autoradiograms of 125I-labeled HDL-perfused adrenals show silver grains specifically associated with the cell surface microvillar channels, and confirm the notion that the particles filling the channels are exogenously delivered HDL. Physiologic data from similarly perfused adrenals in a parallel study show that the channel-refilling process is directly related to selective (i.e., nonendocytic) cholesterol uptake and that this cholesterol uptake is associated with corticosterone production. Together, these data suggest the hypothesis that plasma lipoprotein cholesterol utilized for corticosteroid synthesis in rat adrenal fasciculata cells may be derived from lipoproteins trapped in surface-associated microvillar channels. Although the mechanism responsible for the cholesterol transfer is not yet defined, it is clearly distinct from the classical process of receptor-mediated endocytosis and catabolism of lipoprotein particles.  相似文献   

19.
Cytochalasin B inhibits increase in steroid synthesis by mouse adrenal tumor cells (Y-1), produced either by ACTH or cyclic AMP. Basal levels of steroid synthesis are not decreased and the inhibitor acts by decreasing the response of the side-chain cleavage step (cholesterol → pregnenolone) to ACTH. Inhibition is reversible and is seen in medium without glucose. These observations suggest that microfilaments may play a role in the response of adrenal cells to ACTH.  相似文献   

20.
Dispersed chick adrenal cells were incubated with either ACTH, cholera toxin or forskolin. All three agents stimulated cyclic AMP accumulation and secretion of corticosterone and aldosterone by the dispersed cells. The dose-response to ACTH was similar for cyclic AMP and corticosterone but aldosterone secretion appeared to be more sensitive to ACTH stimulation. Concentrations higher than 10(-8) M of ACTH caused suppression of corticosterone output but not of cyclic AMP accumulation or aldosterone secretion. A significant cyclic AMP accumulation occurred within 30 min of exposure to ACTH whereas significant increases in steroid secretion were observed only after 30 min. An early increase (within 30 min) in cyclic AMP accumulation with both cholera toxin and forskolin was not accompanied by any significant stimulation of steroid secretion, which occurred only after 120 min. The results with the avian adrenal cells are consistent with the thesis that steroid production in the adrenocortical cells is stimulated by cyclic AMP-dependent pathways, whereas steroid release may be modulated by others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号