首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens.  相似文献   

3.
Very few obligatory relationships involve viruses to the remarkable exception of polydnaviruses (PDVs) associated with tens of thousands species of parasitic wasps that develop within the body of lepidopteran larvae. PDV particles, injected along with parasite eggs into the host body, act by manipulating host immune defences, development and physiology, thereby enabling wasp larvae to survive in a potentially harmful environment. Particle production does not occur in infected tissues of parasitized caterpillars, but is restricted to specialized cells of the wasp ovaries. Moreover, the genome enclosed in the particles encodes almost no viral structural protein, but mostly factors used to manipulate the physiology of the parasitized host. We recently unravelled the viral nature of PDVs associated with braconid wasps by characterizing a large set of nudivirus genes residing permanently in the wasp chromosome(s). Many of these genes encode structural components of the bracovirus particles and their expression pattern correlates with particle production. They constitute a viral machinery comprising a large number of core genes shared by nudiviruses and baculoviruses. Thus bracoviruses do not appear to be nudiviruses remnants, but instead complex nudiviral devices carrying DNA for the delivery of virulence genes into lepidopteran hosts. This highlights the fact that viruses should no longer be exclusively considered obligatory parasites, and that in certain cases they are obligatory symbionts.  相似文献   

4.
Polydnaviruses are obligate symbionts of some parasitic hymenopteran wasps responsible for modifying the physiology of their host lepidopteran larvae to benefit the endoparasite. Injection of Campoletis sonorensis ichnovirus (CsIV) into Heliothis virescens larvae alters larval growth, development and immunity but genes responsible for alterations of host physiology are not well described. Recent studies of polydnavirus genomes establish that these genomes encode families of related genes expressed in parasitized larvae. Here we evaluate five members of the CsIV cys-motif gene family for their ability to inhibit growth and development of lepidopteran larvae. To study the function of cys-motif proteins, recombinant proteins were produced from baculovirus expression vectors and injected or fed to H. virescens larvae in diet. rVHv1.1 was identified as the most potent protein tested causing a significant reduction in growth of H. virescens and Spodoptera exigua larvae. H. virescens larvae ingesting this protein also exhibited delayed development, reductions in pupation and increased mortality. Increased mortality was associated with chronic sub-lethal baculovirus infections. Taken together, these data indicate that the cys-motif proteins have pleiotropic effects on lepidopteran physiology affecting both development and immunity.  相似文献   

5.
6.
7.
Polydnaviruses are double-stranded DNA viruses associated with some subfamilies of ichneumonoid parasitoid wasps. Polydnavirus virions are delivered during wasp parasitization of a host, and virus gene expression in the host induces alterations of host physiology. Infection of susceptible host caterpillars by the polydnavirus Campoletis sonorensis ichnovirus (CsIV) leads to expression of virus genes, resulting in immune and developmental disruptions. CsIV carries four homologues of insect gap junction genes (innexins) termed vinnexins, which are expressed in multiple tissues of infected caterpillars. Previously, we demonstrated that two of these, VinnexinD and VinnexinG, form functional gap junctions in paired Xenopus oocytes. Here we show that VinnexinQ1 and VinnexinQ2, likewise, form junctions in this heterologous system. Moreover, we demonstrate that the vinnexins interact differentially with the Innexin2 orthologue of an ichnovirus host, Spodoptera frugiperda. Cell pairs coexpressing a vinnexin and Innexin2 or pairs in which one cell expresses a vinnexin and the neighboring cell Innexin2 assemble functional junctions with properties that differ from those of junctions composed of Innexin2 alone. These data suggest that altered gap junctional intercellular communication may underlie certain cellular pathologies associated with ichnovirus infection of caterpillar hosts.  相似文献   

8.
The relationship between parasitic wasps and bracoviruses constitutes one of the few known mutualisms between viruses and eukaryotes. The virions produced in the wasp ovaries are injected into host lepidopteran larvae, where virus genes are expressed, allowing successful development of the parasite by inducing host immune suppression and developmental arrest. Bracovirus-bearing wasps have a common phylogenetic origin, and contemporary bracoviruses are hypothesized to have been inherited by chromosomal transmission from a virus that originally integrated into the genome of the common ancestor wasp living 73.7 +/- 10 million years ago. However, so far no conserved genes have been described among different braconid wasp subfamilies. Here we show that a gene family is present in bracoviruses of different braconid wasp subfamilies (Cotesia congregata, Microgastrinae, and Toxoneuron nigriceps, Cardiochilinae) which likely corresponds to an ancient component of the bracovirus genome that might have been present in the ancestral virus. The genes encode proteins belonging to the protein tyrosine phosphatase family, known to play a key role in the control of signal transduction pathways. Bracovirus protein tyrosine phosphatase genes were shown to be expressed in different tissues of parasitized hosts, and two protein tyrosine phosphatases were produced with recombinant baculoviruses and tested for their biochemical activity. One protein tyrosine phosphatase is a functional phosphatase. These results strengthen the hypothesis that protein tyrosine phosphatases are involved in virally induced alterations of host physiology during parasitism.  相似文献   

9.
Polydnavirus genomes and viral gene functions are atypical for viruses. Polydnaviruses are the only group of viruses with segmented DNA genomes and have an unusual obligate mutualistic association with parasitic Hymenoptera, in which the virus is required for survival of the wasp host and vice versa. The virus replicates asymptomatically in the wasp host but severely disrupts lepidopteran host physiology in the absence of viral DNA replication. It is not surprising then that viral gene expression is divergent in its two insect hosts and that differences in viral gene expression are linked to these divergent functions. Some viral genes are expressed only in the wasp host while other viral genes are expressed only in the lepidopteran host and are presumed to be involved in the disruption of host physiological systems. Our laboratory has described the expression and regulation of a family of viral genes implicated in suppressing the lepidopteran immune system, the cys-motif genes. In conjunction with these studies we have described the physical organization of additional viral gene segments. We have cloned, mapped and begun the sequence analysis of selected viral DNA segments. We have noted that some viral DNA segments are nested and that nested viral DNA segments encode the abundantly expressed, secreted cys-motif genes. Conversely, other viral segments are not nested, encode less abundantly expressed genes and may be targeted intra-cellularly. These results suggest that nesting of segments in polydnavirus genomes may be linked to the levels of gene expression. By extension, the unique, segmented organization of polydnavirus genomes may be associated, in part, with the requirement for divergent levels of viral gene expression in lepidopteran hosts in the absence of viral DNA replication.  相似文献   

10.
During oviposition, many endoparasitic wasps inject virus-like particles into their insect hosts that enable these parasitoids to evade or directly suppress their hosts' immune system, especially encapsulation by hemocytes. These particles are defined as virions that belong to viruses of the two genera that comprise the family Polydnaviridae, bracoviruses (genus Bracovirus) transmitted by braconid wasps, and ichnoviruses (genus Ichnovirus) transmitted by ichneumonid wasps. Structurally, bracovirus virions resemble nudivirus and baculovirus virions (family Baculoviridae), and ichnovirus virions resemble those of ascoviruses (family Ascoviridae). Whereas nudiviruses, baculoviruses and ascoviruses replicate their DNA and produce progeny virions, polydnavirus DNA is integrated into and replicated from the wasp genome, which also directs virion synthesis. The structural similarity of polydnavirus virions to those of viruses that attack the wasps' lepidopteran hosts, along with polydnavirus transmission and replication biology, suggest that these viruses evolved from insect DNA viruses by symbiogenesis, the same process by which mitochondia and chloroplasts evolved from bacteria. Molecular evidence supporting this hypothesis comes from similarities among structural proteins of ascoviruses and the Campoletis sonorensis ichnovirus. Implications of this hypothesis are that polydnaviruses evolved from viruses, but are no longer viruses, and that DNA packaged into polydnavirus virions is not viral genomic DNA per se, but rather wasp genomic DNA consisting primarily of wasp genes and non-coding DNA. Thus, we suggest that a better understanding of polydnaviruses would result by viewing these not as viruses, but rather as a wasp organelle system that evolved to shuttle wasp genes and proteins into hosts to evade and suppress their immune response.  相似文献   

11.
To evaluate the relationship between immune suppression and host range six lepidopteran species were parasitized by the ichneumonid parasitoid Campoletis sonorensis. Parasitism inhibited the growth of permissive hosts (Heliothis virescens, Helicoverpa zea, and Trichoplusia ni), whereas growth of semi-permissive (Spodoptera exigua, Agrotis ipsilon) and non-permissive hosts (Manduca sexta) was not significantly affected. The 29-36 kDa ovarian protein (OP), responsible for transient immunosuppression in the permissive host H. virescens, bound to and was endocytosed by hemocytes of permissive and non-permissive hosts. Expression of the cysteine-rich polydnavirus gene, VHv1.4, was detected in all the hosts, but declined only in semi- and non-permissive hosts at later times after parasitization. The VHv1.4 protein bound to hemocytes of permissive and semi-permissive hosts, but did not bind to hemocytes of the non-permissive host, M. sexta. Melanization of larval hemolymph was severely inhibited by parasitism in permissive hosts, but was unaffected in M. sexta. In the semi-permissive host, A. ipsilon, hemolymph melanization was transiently inhibited while viral genes were expressed. In conclusion, C. sonorensis OP transiently inhibits encapsulation in all hosts that were tested. The host range of C. sonorensis seems to be determined by whether or not the C. sonorensis ichnovirus (CsIV) is able to establish persistent infections of parasitized larvae to provide long-term suppression of host immunity.  相似文献   

12.
Parasitoid wasps are among the most diverse insects on earth with many species causing major mortality in host populations. Parasitoids introduce a variety of factors into hosts to promote parasitism, including symbiotic viruses, venom, teratocytes and wasp larvae. Polydnavirus‐carrying wasps use viruses to globally suppress host immunity and prevent rejection of developing parasites. Although prior results provide detailed insights into the genes viruses deliver to hosts, little is known about other products. RNAseq and proteomics were used to characterize the proteins secreted by venom glands, teratocytes and larvae from Microplitis demolitor, which carries M. demolitor bracovirus (MdBV). These data revealed that venom glands and teratocytes secrete large amounts of a small number of products relative to ovaries and larvae. Venom and teratocyte products exhibited almost no overlap with one another or MdBV genes, which suggested that M. demolitor effector molecules are functionally partitioned according to their source. This finding was well illustrated in the case of MdBV and teratocytes. Many viral proteins have immunosuppressive functions that include disruption of antimicrobial peptide production, yet this study showed that teratocytes express high levels of the antimicrobial peptide hymenoptaecin, which likely compensates for MdBV‐mediated immunosuppression. A second key finding was the prevalence of duplications among genes encoding venom and teratocyte molecules. Several of these gene families share similarities with proteins from other species, while also showing specificity of expression in venom glands or teratocytes. Overall, these results provide the first comprehensive analysis of the proteins a polydnavirus‐carrying wasp introduces into its host.  相似文献   

13.
Baculoviruses and parasitoids are critically important biological control agents in integrated pest management (IPM). They have been simultaneously and sequentially used to target insect pests. In this study, we examined the impacts of both baculovirus and polydnavirus (PDV) infection on the host cellular immune response. Larvae of the lepidopteran Spodoptera litura were infected by Spodoptera litura multicapsid nucleopolyhedrovirus (SpltMNPV) and then the animals were parasitized by the braconid wasp Microplitis bicoloratus. The fate of the parasitoids in the dually infected hosts was followed and encapsulation of M. bicoloratus first instar larvae was observed. Hemocytes of S. litura larvae underwent apoptosis in naturally parasitized hosts and in non-parasitized larvae after injection of M. bicoloratus ovarian calyx fluid (containing MbPDV) plus venom (CFPV). However, assessments of the percentages of cells undergoing apoptosis under different treatments indicated that SpltMNPV could inhibit MbPDV-induced apoptosis in hemocytes when hosts were first injected with SpltMNPV budded virus (BV) followed by injection with M. bicoloratus CFPV. As the time of injection with SpltMNPV BV increased, the percentages of apoptosis in hemocytes population declined. Furthermore, in vitro, the percentages of apoptosis showed that SpltMNPV BV could inhibit MbPDV-induced granulocytes apoptosis. The occurrence of MbPDV-induced host granulocytes apoptosis was inhibited in the dually infected hosts. As hemocytes apoptosis causes host immunosuppression, the parasitoids are normally protected from the host immune system. However, in larvae infected with both baculovirus and PDV, the parasitoids underwent encapsulation in the host hemocoel.  相似文献   

14.
15.
One of the more unusual groups of insect pathogens consists of members of the family Polydnaviridae, insect DNA viruses that live in mutual symbioses with their associated parasitoid wasp (Hymentoptera) carriers until they are injected into specific lepidopteran hosts. Once inside this secondary host, polydnaviruses cause a wide variety of negative effects that ultimately ensure the survival of the parasitoid larvae. Because of their unusual life strategy and genetic features, it had been difficult to fully characterise polydnaviruses in terms of evolutionary history, replication cycle and functions in the host that might normally be well characterised for more conventional viruses. Recently, our understanding of polydnavirus evolutionary origins, gene content, genome organisation and functions in parasitism has greatly increased. Key findings are summarised in this review with emphasis on evolution of polydnavirus genes and genomes, their functional roles in insect pathology and their potential applications in insect biological control and biotechnology.  相似文献   

16.
The relationship between parasitoid wasps and polydnaviruses constitutes one of the few known mutualisms between viruses and eukaryotes. Viral particles are injected with the wasp eggs into parasitized larvae, and the viral genes thus introduced are used to manipulate lepidopteran host physiology. The genome packaged in the particles is composed of 35 double-stranded DNA (dsDNA) circles produced in wasp ovaries by amplification of viral sequences from proviral segments integrated in tandem arrays in the wasp genome. These segments and their flanking regions within the genome of the wasp Cotesia congregata were recently isolated, allowing extensive mapping of amplified sequences. The bracovirus DNAs packaged in the particles were found to be amplified within more than 12 replication units. Strikingly, the nudiviral cluster, the genes of which encode particle structural components, was also amplified, although not encapsidated. Amplification of bracoviral sequences was shown to involve successive head-to-head and tail-to-tail concatemers, which was not expected given the nudiviral origin of bracoviruses.  相似文献   

17.
18.
Bracoviruses are used by parasitoid wasps to allow development of their progeny within the body of lepidopteran hosts. In parasitoid wasps, the bracovirus exists as a provirus, integrated in a wasp chromosome. Viral replication occurs in wasp ovaries and leads to formation of particles containing dsDNA circles (segments) that are injected into the host body during wasp oviposition. We identified a large DNA transposon Maverick in a parasitoid wasp bracovirus. Closely related elements are present in parasitoid wasp genomes indicating that the element in CcBV corresponds to the insertion of an endogenous wasp Maverick in CcBV provirus. The presence of the Maverick in a bracovirus genome suggests the possibility of transposon transfers from parasitoids to lepidoptera via bracoviruses.  相似文献   

19.
In the present study, we used gamma-ray to irradiate the female parasitoids to make wasp eggs infertile, resulting in pseudoparasitization, which allowed the analysis of maternal secretions such as polydnaviruses (PDVs) and venom in the absence of larval secretions or teratocytes by the growing parasitoids. We then investigated the spermatogenesis and components of testicular proteins of male Plutella xylostella larvae pseudoparasitized by two endoparasitoids (Cotesia vestalis and Diadegma semiclausum). The results showed that pseudoparasitism by the two endoparasitoids at the early third instar host larvae both induced smaller testes in size than those of nonparasitized host larvae. Both of them caused parasitic castration, and the degree of castration is almost as severe as in naturally parasitized hosts. This suggested that PDVs and venom played a major role in the degeneration of host testes. There are significant differences in the degree of castration induced by the two endoparasitoids, with respect to testicular growth, testicular protein concentrations, and histological changes of germ cells. Cotesia vestalis bracovirus always has a significantly stronger effect on host testicular growth and development than D. semiclausum ichnovirus. SDS-PAGE analysis indicated that synthesis of P 65 and P 67 proteins were clearly inhibited in testes of hosts that were pseudoparasitized by C. vestalis while reduction in synthesis of other proteins was not evident.  相似文献   

20.

Background  

In pathogens, certain genes encoding proteins that directly interact with host defences coevolve with their host and are subject to positive selection. In the lepidopteran host-wasp parasitoid system, one of the most original strategies developed by the wasps to defeat host defences is the injection of a symbiotic polydnavirus at the same time as the wasp eggs. The virus is essential for wasp parasitism success since viral gene expression alters the immune system and development of the host. As a wasp mutualist symbiont, the virus is expected to exhibit a reduction in genome complexity and evolve under wasp phyletic constraints. However, as a lepidopteran host pathogenic symbiont, the virus is likely undergoing strong selective pressures for the acquisition of new functions by gene acquisition or duplication. To understand the constraints imposed by this particular system on virus evolution, we studied a polydnavirus gene family encoding cyteine protease inhibitors of the cystatin superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号