首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Karoui  F Bex  P Drze    M Couturier 《The EMBO journal》1983,2(11):1863-1868
A mini-F region 800 bp long, located between the two F origin sites, plays an essential role in the relationship between the F plasmid and its host. This region comprises two sets of overlapping coding sequences: the first set codes for the newly identified H1 and H2 polypeptides; the second set codes for polypeptides G1 and G2. A mini-F amber mutation (Ham22) causes the virtual disappearance of polypeptides H1 and H2 but only slightly reduces synthesis of polypeptides G1 and G2. This mutation: (i) renders mini-F hybrids lethal to the host cells (conditional Hos- phenotype for host survival) and (ii) causes the induction of a resident prophage in recA+ strains (conditional Map- phenotype for maintenance of the prophage). When an additional mutation prevents the synthesis of polypeptides G1 and G2, both the lethal character and the induction of the prophage are abolished. We conclude: (i) that polypeptides G1 and/or G2 are specific mini-F polypeptides involved in the plasmid-mediated killing effect and in the recA-dependent induction of the resident prophage and (ii) that, in normal conditions, polypeptides H1 and/or H2 negatively control (directly or indirectly) the action of polypeptides G1 and/or G2. In relation to the analysis of indirect induction mediated by u.v.-irradiated lambda mini-F hybrids, we propose that polypeptides G1 and/or G2 are specific mini-F products involved in the activation of the bacterial SOS pathway. The H1/H2 and G1/G2 polypeptides could constitute the controlled mini-F signal enabling the coordination between cell division and F plasmid replication.  相似文献   

2.
An Mr 29000 protein is essential for mini-F maintenance in E. coli   总被引:12,自引:0,他引:12  
L A Watson  S H Phua  P L Bergquist  H E Lane 《Gene》1982,19(2):173-178
Plasmids consisting of mini-F inserted into multicopy vectors were constructed. Derivatives of these hybrid replicons were isolated which contained the transposon Tn5. The polypeptides encoded by these plasmids were identified by Escherichia coli minicell analysis. We show that a previously unidentified polypeptide of 29000 Mr is encoded by the mini-F gene E between 45.1 and 46.2 F kb on the mini-F plasmid map, and that this coding sequence (E gene) is transcribed rightward. Hybrid plasmids carrying Tn5 inserted into the E gene are unable to replicate in a polA- strain. Hence the E protein is essential for mini-F replication. Mutations in the A and B genes of mini-F affect E gene expression, and the results suggest that E protein synthesis is stimulated by A protein.  相似文献   

3.
Deleted mini-F plasmids with defects in replication were constructed and tested to see whether they could be rescued through complementation by a helper plasmid. This allowed us to identify two genetic loci determining trans-acting functions required for stable maintenance of plasmid mini-F, one encoded by the PstI fragment from 45.7 to 47.3 F-coordinates (F) and the other most probably located in the region from 43.1 to 43.8 F. The smallest mini-F plasmid that could be established through complementation consists of the PstI fragment 44.0 to 45.7 F, encoding origin II and the incB locus.  相似文献   

4.
The fertility plasmid F'gal was not stably maintained in a hupA-hupB double mutant of Escherichia coli. Moreover, mini-F plasmids pFZY1, pFTC1 and pFTC2 were unable to transform the double mutant, though these plasmids efficiently transformed cells harboring a hupA or hupB single mutation. The composite plasmid pFHS1, which consists of the f5 DNA fragment of F plasmid and the whole DNA of a pSC101 derivative that carries a temperature-sensitive mutation for DNA replication, was not stably maintained in the hup double mutant at 42°C. These findings strongly suggest that HU protein is required for ori2-dependent replication of the F plasmid.  相似文献   

5.
Mini-F is a segment of the conjugative plasmid F consisting of two origins of replication flanked by regulatory regions, which ensure a normal control of replication and partitioning. Adjacent to the ori-2 origin is a complex coding region that consists of the E gene overlapped by three open reading frames with the coding potential for 9000 Mr polypeptides here designated 9 kd-1, 9 kd-2 and 9 kd-3. In this paper, we show that open reading frame 9 kd-3 is preceded by active promoter and Shine-Dalgarno sequences. The E coding region specifies: an initiator of replication, which acts at the ori-2 site; a function that negatively regulates the expression of the E gene; and a function involved in mini-F copy number control. To assign one of these functions to one of the overlapping coding sequence, we have isolated, characterized and sequenced mutations mapping in the E coding region. In this paper, we analyse two mutations (cop5 and pla25) that abolish the repression of the E gene. As these mutations affect the primary structure of protein E itself but not the 9 kd polypeptides, we conclude that protein E takes part in the negative regulation of its own synthesis. In addition, the localization of the cop5 and pla25 mutations indicates that the carboxy-terminal end of the E protein is involved in the autorepression function. The cop5 mutation causes an eightfold increase of the mini-F copy number. The pla25 mutation leads to the inability of the derived mini-F plasmid to give rise to plasmid-harbouring bacteria. The ways in which the cop5 and pla25 mutations may lead to such phenotypes are discussed in relation to the different functions mapping in the E coding sequence.  相似文献   

6.
Direct repeats of the F plasmid incC region express F incompatibility   总被引:22,自引:0,他引:22  
A Tolun  D R Helinski 《Cell》1981,24(3):687-694
The nucleotide sequence of the incompatibility region incC, located at 45.8--46.4 kb on the F plasmid map, was determined. This region consists of 543 bp and contains sufficient information to code for only two small polypeptides of 34 and 30 amino acids each. Deletion of the ATG start codons for these two polypeptides has no effect on expression of incC incompatibility. A prominent feature of this sequence is the presence of five 22 bp direct repeats. A 58 bp segment of the incC region that contains two of these direct repeats was inserted into plasmid pACYC184, which is compatible with the F plasmid. The pACYC184 plasmid containing the direct-repeat sequences now expresses incompatibility with the F'lac plasmid and replication-proficient derivatives of the mini-F plasmid.  相似文献   

7.
The par region of mini-F is both necessary and sufficient to promote equipartition of plasmid copies to daughter cells. It is approximately 2.5 kb long and contains the coding sequences for two proteins, F1 (41 kDa) and F2 (37 kDa). We isolated 13 mutants of a phage λ-mini-F hybrid that form unstable plasmids. Two of these putative Par? mutants are fully suppressible nonsense (amber) mutants. One of the amber mutants, par-41, eliminates the synthesis of F1, generating a large nonsense fragment of the protein. The other mutant, par-36, eliminates the synthesis of F2. Thus both proteins appear to be essential for plasmid equipartition.  相似文献   

8.
To analyze the boundaries of the functional coding region of the HSV-2(333) thymidine kinase gene (TK gene), deletion mutants of hybrid plasmid pMAR401 H2G, which contains the 17.5 kbp BglII-G fragment of HSV-2 DNA, were prepared and tested for capacity to transform LM(TK-) cells to the thymidine kinase-positive phenotype. These studies showed that hybrid plasmids containing 2.2-2.4 kbp subfragments of HSV-2 BglII-G DNA transformed LM(TK-) cells to the thymidine kinase-positive phenotype and suggested that the region critical for transformation might be less than 2 kbp. That the activity expressed in the transformants was HSV-2 thymidine kinase was shown by experiments with type-specific enzyme-inhibiting rabbit antisera and by disc-polyacrylamide gel electrophoresis analyses. DNA fragments of the HSV-2 TK gene were subcloned in phage M13mp9 and M13mp8. A sequence of 1656 bp containing the entire coding region of the TK gene and the flanking sequences was determined by the dideoxynucleotide chain termination method. Comparisons with the HSV-1(Cl 101) TK gene revealed that PstI, PvuII, and EcoRI cleavage sites had homologous locations as did promoter, translational start and stop, and polyadenylation signals. Extensive homology was observed in the nucleotide sequence preceding the ATG translational start signal and in portions of the coding region of the genes. Comparisons of the predicted amino acid sequences of the HSV-1 and HSV-2 thymidine kinase polypeptides revealed that both were enriched in alanine, arginine, glycine, leucine, and proline residues and that clear, but interrupted homology existed within several regions of the polypeptide chains. Stretches of 15-30 amino acid residues were identical in conserved regions. The possibility is suggested that domains containing some of the conserved amino acid sequences might have a role in substrate binding and as major antigenic determinants.  相似文献   

9.
A dominant sfiB allele has been cloned which renders partial diploids of an sfiB + Escherichia coli host resistant to division inhibition mediated by the SOS response. Transpositional mutagenesis was used to map the position of this sfiB114 allele, carried by a plasmid pLG552 , to an approximately 0.6-kb region overlapping the coding regions for ftsA and ftsZ , two genes essential for normal division. Most Tn 1000 insertions which inactivated sfiB114 also inactivated the ftsA function and caused the disappearance of both a 47-K polypeptide and reduced levels of a 42-K polypeptide in maxi-cells carrying pLG552 . An additional insertion inactivating sfiB114 was mapped to the right of ftsA and resulted in loss of the 42-K but not the 47-K polypeptide in maxi-cells. Moreover, a 2.1-kb BamHI-EcoRI DNA fragment was subcloned which carried ftsA and coded for a 47-K polypeptide but did not carry sfiB114 and did not complement ftsZ . We conclude that sfiB114 is located within ftsZ coding for a 42-K polypeptide. Nevertheless, insertions into ftsZ coding the 47-K polypeptide suppress the sfiB114 allele by substantially reducing the synthesis of the FtsZ ( SfiB114 ) polypeptide. The level of residual FtsZ synthesis was minimal when Tn 1000 was inserted closest to the distal end of ftsA , indicating the presence of a regulatory region essential for maximal expression of ftsZ .  相似文献   

10.
11.
Besides producing thymine-requiring mutants (thy), trimethoprim (TMP) cured the mini-ColE1 replicon pML21 at an appreciable frequency. The cured Escherichia coli K-12 cells behaved like polA mutants by failing to support the stable maintenance of the ColE1 plasmid. The mini-F replicon pSC138, which was lacking all three insertion sequences (IS3, gammadelta, and IS2) normally used for F-specific integration and excision, was not cured by TMP. Instead, it integrated into specific regions of the E. coli chromosome and thus caused auxotrophic mutations in operons which were always localized on either side of oriC (origin of chromosomal replication). The incompatibility and replication functions of the integrated plasmid in auxotrophs were retained, and the plasmid DNAs recovered from spontaneously occurring revertants did not show any alterations in their contour lengths as determined by electron microscopy. The F replicon (fragment 5) contained in plasmid pSC138 carried two origins of replication, the primary origin, oriV(1) at 42.6F and the secondary origin, oriV(2), at 44.1F. Another mini-F plasmid pMF21, deleted of the primary origin of replication (oriV(1)), was still capable of autonomous replication but failed to integrate onto the chromosome after TMP treatment. Furthermore, the composite plasmid pRS5, which normally uses only the replication origin and functions of the pSC101 component, was also insensitive to TMP. On the basis of these results, we propose a new scheme of F integration via the functional oriV(1) and suggest the involvement of a similar mechanism in the formation of Hfr strains by integrative suppression.  相似文献   

12.
13.
Summary Proteins specified by the mini-F plasmid (EcoRI restriction fragment f5) were labeled in Escherichia coli minicells and analyzed by SDS-PAGE. Four mini-F encoded proteins could be identified, having molecular weights of 44,000 (A), 36,000 (B), 34,000 (C), and 25,300 (D) daltons. The absence of certain proteins in deleted derivatives of mini-F, generated by treatment with various restriction endonucleases, allowed mapping of the proteins. The A protein maps between F-coordinates 45.7 and 47.9 kb. The gene locus for the B protein is located between 47.2 and 49.3 kb. The C protein maps on a BamHI fragment bordered by F-coordinates 41.5 and 42.8 kb, and finally the D protein maps between 42.8 and 43.8 kb. In addition our data confirm that there are two incompatibility loci on the mini-F genome, located between 45.7 and 47.2 kb (incA) and 44.0 and 45.7 kb (incB).We suggest that (i) the C and D proteins are positive control elements, interacting with origin I and origin II, respectively, (ii) that the incB locus is involved in plasmid partitioning, and (iii) that the A protein encoded by the incA locus is a negative control element.  相似文献   

14.
The nucleotide sequence of a 4.6-kb SalI-EcoRI DNA fragment including the trmD operon, located at min 56 on the Escherichia coli K-12 chromosome, has been determined. The trmD operon encodes four polypeptides: ribosomal protein S16 (rpsP), 21-K polypeptide (unknown function), tRNA-(m1G)methyltransferase (trmD) and ribosomal protein L19 (rplS), in that order. In addition, the 4.6-kb DNA fragment encodes a 48-K and a 16-K polypeptide of unknown functions which are not part of the trmD operon. The mol. wt. of tRNA(m1G)methyltransferase determined from the DNA sequence is 28 424. The probable locations of promoter and terminator of the trmD operon are suggested. The translational start of the trmD gene was deduced from the known NH2-terminal amino acid sequence of the purified enzyme. The intercistronic regions in the operon vary from 9 to 40 nucleotides, supporting the earlier conclusion that the four genes are co-transcribed, starting at the major promoter in front of the rpsP gene. Since it is known that ribosomal proteins are present at 8000 molecules/genome and the tRNA-(m1G)methyltransferase at only approximately 80 molecules/genome in a glucose minimal culture, some powerful regulatory device must exist in this operon to maintain this non-coordinate expression. The codon usage of the two ribosomal protein genes is similar to that of other ribosomal protein genes, i.e., high preference for the most abundant tRNA isoaccepting species. The trmD gene has a codon usage typical for a protein made in low amount in accordance with the low number of tRNA-(m1G)methyltransferase molecules found in the cell.  相似文献   

15.
H Willems  M Ritter  C Jger    D Thiele 《Journal of bacteriology》1997,179(10):3293-3297
Chromosomal DNA from Coxiella burnetii Scurry Q217 was screened for the presence of plasmid-homologous sequences. Total DNA from Scurry Q217 was digested with NotI, and the resulting DNA fragments were separated by contour-clamped homogeneous electric field pulsed-field gel electrophoresis (CHEF-PFGE). Following hybridization with biotin-labeled QpH1 plasmid as a probe, two DNA fragments of 40 and 170 kb were identified as targets. These fragments were cloned, and subclones containing QpH1-homologous sequences were completely sequenced. The physical mapping of DNA fragments was achieved by PCR with primers derived from adjacent fragments, and a total of 18,360 bp was sequenced. Within the QpH1-homologous region spanning 16,624 bp, homology was as high as 99%. Deletions were identified within EcoRI fragments A(H)-C(H)-K(H)-B(H) (13,490 bp) and J(H)-G(H)-E(H)-L+-D(H) (6,509 bp) and in fragment A(H) alone (619 bp). An insertion of 744 bp was identified within the JDc region of Scurry Q217. A search for putative coding regions identified a total of 17 open reading frames (ORFs). Compared to plasmid QpH1, 6 ORFs were identical, 5 ORFs were different in size, 6 ORFs were newly generated, and 25 ORFs were lost. It was found that plasmid-homologous sequences in Scurry Q217 were of chromosomal origin.  相似文献   

16.
A mini-F-coded protein, named F2 protein, binds specifically to mini-F DNA. This protein has a molecular weight of 37,000 and is coded by the A2 segment of the mini-F genome (47.3 to 49.4 kilobases on the F coordinate map). The binding site is located also in the A2 segment of mini-F. This binding site is lost by spontaneous deletion when the A2 segment alone, but not A2 together with its neighboring segment, is cloned in a multicopy plasmid pBR322. These data are discussed in connection with incompatibility and plasmid stability.  相似文献   

17.
The apoprotein of yeast cytochrome b is translated on mitochondrial ribosomes and coded for by a split gene which is located in the COB-BOX region on mitochondrial DNA. With the aid of an antibody against cytochrome b, we identified the cytochrome b-cross-reacting polypeptides of respiration-deficient mutants mapping either in coding or intervening sequences of the cytochrome b gene. Most mutations in the coding regions caused the accumulation of a single apocytochrome b fragment whose apparent molecular weight (12,000 to 26,600) depended on the map position of the mutation. In contrast, mutations in putative intervening sequences often led to multiple new polypeptides immunologically related to apocytochrome b. Some of these abnormal polypeptides were considerably larger than wild type apocytochrome b. This suggests that mutations in intervening sequences can thus generate aberrant polypeptide products.  相似文献   

18.
Summary Saccharomyces cerevisiae 2-m DNA and some of its restriction fragments were integrated in vector pCR1, pBR313 or pBR322 and their expression in Escherichia coli P678-54 minicells was analyzed. 2-m DNA inserted at the EcoRI site of pCR1 or pBR313 and at the PstI site of pBR322, promoted the synthesis of polypeptides of 48,000, 37,000, 35,000 and 19,000 daltons. The DNA regions coding for these polypeptides were mapped on the 2-m DNA molecule by insertion of single EcoRI or HindIII restriction fragments and comparison of the polypeptides produced. For the synthesis of the 37,000 dalton polypeptide, intact sites RIB and H3 were required. The disappearance of the 37,000 dalton polypeptide on interruption of one of these sites by insertion of the vector, was correlated with the appearance of a polypeptide of 22,000 or 23,500 daltons repectively. The DNA sequence coding for the 37,000 dalton polypeptide, therefore, has to be located in the S-loop region close to or overlapping with the sites RIB and H3. Assuming that the 22,000 and the 23,500 dalton polypeptides are truncated forms of the 37,000 dalton polypeptide, the last polypeptide can be exactly mapped. The polypeptide of 48,000 daltons was mapped to that half of the L-loop segment containing the sites H1 and H2. If, however, HindIII fragment H1-H2 was expressed, the 48,000 dalton polypeptide was lost and concomitantly a 43,000 dalton polypeptide appeared. We assume that this polypeptide results from early termination of the polypeptide of 48,000 daltons. The 35,000 and 19,000 dalton polypeptides were mapped to the S-loop region.The integrated inverted repeat sequence of yeast 2-m DNA did not induce any detectable insert-specific polypeptide synthesis.  相似文献   

19.
Certain derivative mini-F plasmids were found to segregate into Escherichia coli minicells, in contrast to the intact mini-F plasmid which does not. Segregation was not related to the presence or absence of the normal origin of vegetative replication, but appeared to be affected by regions of F which encode replication, incompatibility, copy number control, and partitioning functions. Segregation of mini-F plasmids into minicells was not random; the plasmid concentration in minicells did not correlate with the plasmid concentration in cells. Genes, or gene products, of F from the region spanning the sequences 44.1–49.3F appeared to affect the ability of mini-F plasmids to segregate into minicells. Segregation of mini-F plasmids into minicells was not directly related to stable plasmid inheritance. These results argue for the sequestration of mini-F plasmids in host cells.  相似文献   

20.
Genes encoding the core proteins of adenovirus type 2   总被引:7,自引:0,他引:7  
The nucleotide sequence of the HindIII-D fragment of adenovirus type 2 has been determined. The sequence, which is located between coordinates 41.8 and 51.0, covers most of the L2 cotermination family. It includes three major open translational reading frames encoding the carboxyl-terminal part of the penton base as well as the major core polypeptides V and VII. An additional minor open translational reading frame encoding a highly basic polypeptide was detected in the sequence. The L2 region has a very compact organization with very short distances between the different genes, although no overlapping coding sequences were found. The predicted amino acid sequences of core proteins V and VII reveal that they are highly basic proteins and polypeptide VII resembles the arginine-rich H4 histones in its amino acid composition, but no striking similarities are apparent at the amino acid sequence level. The candidate polypeptide encoded by the newly discovered translational reading frame contains 29% basic residues and includes a hypothetical recognition sequence for the adenovirus-encoded endopeptidase. In conjunction with previously published sequences and those reported in accompanying papers (Akusj?rvi, G., Alestr?m, P., Pettersson, M., Lager, M., J?rnvall, H., and Pettersson, U. (1984) J. Biol. Chem. 259, 13976-13979; Roberts, R. J., O'Neill, K. E., and Yen, C. E. (1984) J. Biol. Chem. 259, 13965-13975) a complete sequence can now be reconstructed for the 35,937-base pairs adenovirus type 2 genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号