首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malate oxidation in plant mitochondria proceeds through the activities of two enzymes: a malate dehydrogenase and a NAD+-dependent malic enzyme. In cauliflower, mitochondria malate oxidation via malate dehydrogenase is rotenone- and cyanide-sensitive. Addition of exogenous NAD+ stimulates the oxidation of malate via malic enzyme and generates an electron flux that is both rotenone- and cyanide-insensitive. The same effects of exogenous NAD+ are also observed with highly cyanide-sensitive mitochondria from white potato tubers or with mitochondria from spinach leaves. Both enzymes are located in the matrix, but some experimental data also suggest that part of malate dehydrogenase activity is also present outside the matrix compartment (adsorbed cytosolic malate dehydrogenase?). It is concluded that malic enzyme and a specific pool of NAD+/NADH are connected to the cyanide-insensitive alternative pathway by a specific rotenone-insensitive NADH dehydrogenase located on the inner face of the inner membrane. Similarly, malate dehydrogenase and another specific pool of NAD+/NADH are connected to the cyanide- (and antimycin-) sensitive pathway by a rotenone-sensitive NADH dehydrogenase located on the inner face of the inner membrane. A general scheme of electron transport in plant mitochondria for the oxidation of malate and NADH can be given, assuming that different pools of ubiquinone act as a branch point between various dehydrogenases, the cyanide-sensitive cytochrome pathway and the cyanide-insensitive alternative pathway.  相似文献   

2.
Isoelectric focusing of MCF-7 cell extracts revealed an association of the glycolytic enzymes glyceraldehyde 3-phosphate-dehydrogenase, phosphoglycerate kinase, enolase, and pyruvate kinase. This complex between the glycolytic enzymes is sensitive to RNase. p36 could not be detected within this association of glycolytic enzymes; however an association of p36 with a specific form of malate dehydrogenase was found. In MCF-7 cells three forms of malate dehydrogenase can be detected by isoelectric focusing: the mitochondrial form with an isoelectric point between 8.9 and 9.5, the cytosolic form with pl 5.0, and a p36-associated form with pl 7.8. The mitochondrial form comprises the mature mitochondrial isoenzyme (pl 9.5) and its precursor form (pl 8.9). Refocusing of the pl 7.8 form of malate dehydrogenase also gave rise to the mitochondrial isoenzyme. Thus, the pl 7.8 form of malate dehydrogenase is actually the mitochondrial isoenzyme retained in the cytosol by the association with p36. Addition of fructose 1,6-bisphosphate to the initial focusing column induced a quantitative shift of the pl 7.8 form of malate dehydrogenase to the mitochondrial forms (pl 8.9 and 9.5). In MCF-7 cells p36 is not phosphorylated in tyrosine. Kinetic measurements revealed that the pl 7.8 form of malate dehydrogenase has the lowest affinity for NADH. Compared to both mitochondrial forms the cytosolic isoenzyme has a high capacity when measured in the NAD → NADH direction (malate → oxaloacetate direction). The association of p36 with the mitochondrial isoenzyme may favor the flow of hydrogen from the cytosol into the mitochondria. Inhibition of cell proliferation by AMP which leads to an inhibition of glycolysis has no effect on complex formation by glycolytic and glutaminolytic enzymes in MCF-7 cells. AMP treatment leads to an activation of malate dehydrogenase, which correlates with the increase of pyruvate and the decrease of lactate levels, but has no effect on the distribution of the various malate dehydrogenase forms. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Antibodies against purified NADP-isocitrate dehydrogenase from pig liver cytosol and pig heart were raised in rabbits. The purified enzymes from these sources are different proteins, as demonstrated by differences in electrophoretic mobility and absence of crossreactivity by immunotitration and immunodiffusion. The NADP-isocitrate dehydrogenase in the soluble supernatant homogenate fraction from pig liver, kidney cortex, brain and erythrocyte hemolyzate was identical with the purified enzyme from pig liver cytosol, as determined by electrophoretic mobility and immunological techniques. The enzyme in extracts of mitochondria from pig heart, kidney, liver and brain was identical with the purified pig heart enzyme by the same criteria. However, the 'mitochondrial' isozyme was the major component also in the soluble supernatant fraction of pig heart homogenate. The 'cytosolic' isozyme accounted for only 1-2% of total NADP-isocitrate dehydrogenase in pig heart, as determined by separation of the isozymes with agarose gel electrophoresis and immunotitration. The mitochondrial isozyme was also the predominant NADP-isocitrate dehydrogenase in porcine skeletal muscle. The ratio of cytosolic/mitochondrial isozyme for porcine whole tissue extract, determined by immunotitration, was about 2 for liver and 1 for kidney cortex and brain. The distribution of isozymes in cell homogenate fractions from ox and rat tissues corresponded to that observed in organs of porcine origin. The mitochondrial and cytosolic isozymes from ox and rat tissues exhibited crossreactivity with the antibodies against the pig heart and pig liver cytosol enzyme, respectively, and the electrophoretic migration patterns were similar qualitatively to those found for the isozymes in porcine tissues. Nevertheless, there were species specific differences in the characteristics of each of the corresponding isozymes. NAD-isocitrate dehydrogenase was not inhibited by the antibodies, confirming that the protein is distinct from that of either isozyme of NADP-isocitrate dehydrogenase.  相似文献   

4.
α-Ketoglutarate : glyoxylate carboligase activity has been reported by other laboratories to be present in mitochondria and in the cytosol of mammalian tissues; the mitochondrial activity is associated with the α-ketoglutarate decarboxylase moiety of the α-ketoglutarate dehydrogenase complex. The cellular distribution of the carboligase has been re-examined here using marker enzymes of known localization in order to monitor the composition of subcellular fractions prepared by differential centrifugation. Carboligase activity paralleled the activity of the mitochondrial matrix enzyme citrate synthase in subcellular fractions prepared from rat liver, heart and brain as well as from rabbit liver. Whole rat liver mitochondria upon lysis released both carboligase and citrate synthase. The activity patterns of several other extramitochondrial marker enzymes differed significantly from that of carboligase in rat liver. In addition, the distribution pattern of carboligase was similar to that of α-ketoglutarate decarboxylase and of α-ketoglutarate dehydrogenase complex.The data indicate that α-ketoglutarate : gloxylate carboligase activity is located exclusively within the mitochondria of the rat and rabbit tissues investigated. There is no evidence for a cytosolic form of the enzyme. Thus the report from another laboratory that the molecular etiology of the human genetic disorder hyperoxaluria type I is a deficiency of cytosolic carboligase must be questioned.  相似文献   

5.
The mitochondrial ATPase inhibitor proteins--the Pullman-Monroy inhibitor (PMI) and the Ca(2+)-binding protein (CaBI)--have a wide distribution, both being present in mitochondria of bovine heart and kidney, rat liver and brain, two mitochondrial populations of rabbit skeletal muscle, and mitochondria from human fibroblasts and the human breast cancer cell line T-47-D. The ratio of CaBI to PMI was highest in heart and skeletal muscle mitochondria. The subsarcolemmal fraction of skeletal muscle had 2.6-times as much CaBI as did the intermyofibrillar. The ratio of CaBI to PMI in the mitochondria of the other normal tissues and fibroblasts was close to 1. In contrast, mitochondria from T-47D cells had 1.5-times as much PMI as CaBI whilst mitochondria from fibroblasts from a patient with Luft's disease showed a virtual lack of PMI. The specific ATPase, ATP-synthetase and succinate dehydrogenase activities of the Luft's mitochondria were, however, in the normal range. The specific ATP synthetase activity of the T-47D cells was significantly higher than normal. We conclude that tissues like heart and skeletal muscle which experience wide fluctuations in intracellular Ca2+ have a greater need for CaBI. Why lack of PMI could lead to 'loose' coupling of oxidative phosphorylation in skeletal muscle of Luft's patients, but not in fibroblasts is discussed.  相似文献   

6.
Homogenates of isolated pancreatic islets contain 40-70 times as much flavin-linked glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) as homogenates of whole pancreas, liver, heart, or skeletal muscle when the activity is assayed with either iodonitrotetrazolium or with dichloroindophenol as an electron acceptor. Intact mitochondria from islets release 3HOH from [2-3H]glycerol phosphate 7 times faster than do skeletal muscle mitochondria. The activity of the cytosolic, NAD-linked, glycerol phosphate dehydrogenase (EC 1.1.1.8) in pancreatic islets is comparable to that of the mitochondrial dehydrogenase so a glycerol phosphate shuttle is possible in pancreatic islets. Diazoxide, an inhibitor of insulin release in vivo and in vitro, inhibits the islet mitochondrial glycerol phosphate dehydrogenase in all three of the assays mentioned above at concentrations that inhibit insulin release and CO2 formation from glucose by isolated pancreatic islets. Diazoxide does not inhibit the dehydrogenase in mitochondria from skeletal muscle, liver, and heart. A slight inhibition in mitochondria from whole pancreas can be accounted for as inhibition of the islet dehydrogenase because no inhibition is observed in mitochondria from pancreas of rats treated with alloxan, an agent that causes diabetes by destroying pancreatic beta cells. The results of this study are compatible with the hypothesis that the mitochondrial glycerol phosphate dehydrogenase has a key role in stimulus-secretion coupling in the pancreatic beta cell during glucose-induced insulin release.  相似文献   

7.
Myocardium and skeletal muscle of white rats have a number of specific features in metabolism of carbohydrates. The skeletal muscle is characterized by high intensity of glycolytic processes and glycolytic substrate phosphorylation, that is testified to by the activity of the terminal glycolysis stage enzymes (pyruvate kinase, lactate dehydrogenase, its isoenzyme spectrum) and by the content of lactate and pyruvate metabolites. In contrast to skeletal muscles, the activity of NAD-dependent malate dehydrogenase in the myocardium is significant both in cytoplasm and in mitochondria. This activity corresponds to a high level of malate and oxaloacetate metabolites and to the activity of NADP-dependent malate dehydrogenase, playing a connective role between glycolysis, the cycle of tricarboxylic acids and glyconeogenesis. Phosphoenolpyruvate carboxykinase, catalyzing the transformation of cytoplasmatic oxaloacetate into phosphoenolpyruvate is more active in the skeletal muscles where the intensity of the tricarboxylic acids cycle reactions is lower and the activity of glycolysis is higher than that of myocardium.  相似文献   

8.
Trypanosoma brucei procyclic forms possess three different malate dehydrogenase isozymes that could be separated by hydrophobic interaction chromatography and were recognized as the mitochondrial, glycosomal and cytosolic malate dehydrogenase isozymes. The latter is the only malate dehydrogenase expressed in the bloodstream forms, thus confirming that the expression of malate dehydrogenase isozymes is regulated during the T. brucei life cycle. To achieve further biochemical characterization, the genes encoding mitochondrial and glycosomal malate dehydrogenase were cloned on the basis of previously reported nucleotide sequences and the recombinant enzymes were functionally expressed in Escherichia coli cultures. Mitochondrial malate dehydrogenase showed to be more active than glycosomal malate dehydrogenase in the reduction of oxaloacetate; nearly 80% of the total activity in procyclic crude extracts corresponds to the former isozyme which also catalyzes, although less efficiently, the reduction of p-hydroxyphenyl-pyruvate. The rabbit antisera raised against each of the recombinant isozymes showed that the three malate dehydrogenases do not cross-react immunologically. Immunofluorescence experiments using these antisera confirmed the glycosomal and mitochondrial localization of glycosomal and mitochondrial malate dehydrogenase, as well as a cytosolic localization for the third malate dehydrogenase isozyme. These results clearly distinguish Trypanosoma brucei from Trypanosoma cruzi, since in the latter parasite a cytosolic malate dehydrogenase is not present and mitochondrial malate dehydrogenase specifically reduces oxaloacetate.  相似文献   

9.
The mdx mouse, an animal model of the Duchenne muscular dystrophy, was used for the investigation of changes in mitochondrial function associated with dystrophin deficiency. Enzymatic analysis of skeletal muscle showed an approximately 50% decrease in the activity of all respiratory chain-linked enzymes in musculus quadriceps of adult mdx mice as compared with controls, while in cardiac muscle no difference was observed. The activities of cytosolic and mitochondrial matrix enzymes were not significantly different from the control values in both cardiac and skeletal muscles. In saponin-permeabilized skeletal muscle fibers of mdx mice the maximal rates of mitochondrial respiration were about two times lower than those of controls. These changes were also demonstrated on the level of isolated mitochondria. Mdx muscle mitochondria had only 60% of maximal respiration activities of control mice skeletal muscle mitochondria and contained only about 60% of hemoproteins of mitochondrial inner membrane. Similar findings were observed in a skeletal muscle biopsy of a Duchenne muscular dystrophy patient. These data strongly suggest that a specific decrease in the amount of all mitochondrial inner membrane enzymes, most probably as result of Ca2+ overload of muscle fibers, is the reason for the bioenergetic deficits in dystrophin-deficient skeletal muscle.  相似文献   

10.
Monospecific (affinity-purified) anti-(yeast glucose-6-phosphate dehydrogenase) IgG inhibits three different NADPH-requiring enzymes, chicken liver dihydrofolate reductase, pigeon liver fatty acid synthetase and chicken liver malic enzyme. The inhibition of all three enzymes was approx. 50% in a 2h incubation with 100 micrograms of IgG. Similarly, with several different NADH-requiring enzymes, an immunocrossreactivity was observed. Monospecific anti-(rabbit muscle glyceraldehyde-3-phosphate dehydrogenase) IgG inhibited yeast alcohol dehydrogenase and pig heart malate dehydrogenase by 39% and 55% respectively. The cross-reactivity observed was tested by affinity chromatography. Immunoaffinity columns made with each monospecific IgG were able to bind each of the enzymes it immunotitrated. Enzymes were eluted with a nondenaturing solvent with little loss of activity. The immunoaffinity column with monospecific anti-(glucose-6-phosphate dehydrogenase) IgG as the bound ligand was also used to purify partially (over 150-fold) both isocitrate dehydrogenase and dihydrofolate reductase from crude rat liver homogenate.  相似文献   

11.
The stereospecificity of the enzyme-dependent oxidation of alpha-[4R-2H]NADH has been determined for four dehydrogenases: two pro-R specific enzymes, pig heart malate dehydrogenase and yeast alcohol dehydrogenase; and two pro-S specific enzymes, rabbit muscle glycerol-3-phosphate dehydrogenase and Rhodopseudomonas spheroides 3-hydroxybutyrate dehydrogenase. In all cases, an enzyme-dependent and substrate-specific oxidation to alpha-NAD+ is observed with the stereochemistry of oxidation identical with that found for the oxidation of the correspondingly labeled beta-NADH. The ability of dehydrogenases from diverse sources to utilize alpha-NADH in a stereochemically competent fashion is discussed in relation to proposed interactions between the nicotinamide sugar moiety and active site residues or obligatory alignments of the pyridine and sugar moieties.  相似文献   

12.
In order to obtain a quantitative estimate of the capacity of the pancreatic islets for provision of cytoplasmic acetyl-coenzyme A and for the turnover of nicotinamide adenine dinucleotide phosphate and its reduced form (NADP+/NADPH), the following enzymes were assayed in islets taken from New Zealand Obese mice: adenosine triphosphate citrate lyase (EC 4.1.3.8), malate dehydrogenase (decarboxylating) (NADP+) (EC 1.1.1.40), glutathione reductase (EC 1.6.4.2) and isocitrate dehydrogenase (NADP+) (EC 1.1.1.42). In addition, the activity of isocitrate dehydrogenase (NAD+) (EC 1.1.1.41) was determined. For comparative purposes the activities in exocrine pancreas, liver, heart muscle, kidney cortex and skeletal muscle were also determined. Specimens of pancreatic islets and the other tissues were microdissected from freeze-dried sections. In comparison with the other tissues, adenosine triphosphate citrate lyase was particularly active in the islets. The NADP+/NAPH-converting enzymes had activities, which suggested a rapid turnover of the islet NADP+/NADPH pool.  相似文献   

13.
Refolding of dimeric porcine cytosolic or mitochondrial malate dehydrogenases and of tetrameric pig heart and skeletal muscle lactate dehydrogenases (containing 5-7 cysteine residues), as well as reformation of the four cystine cross-bridges of bovine pancreatic ribonuclease, were studied in the presence of reduced and oxidized glutathione (GSH and GSSG). At the intracellular GSH level (5 mM) reduced ribonuclease can be reoxidized by 0.01-0.5 mM GSSG (pH 7.4) both at 20 degrees C and 37 degrees C. In this physiological range of GSSG concentrations and pH, the dehydrogenases show at least partial reactivation. With GSSG concentrations greater than 5 mM, reactivation is found to be completely inhibited for all the enzymes given. The results show that at the intracellular level of GSH and GSSG, thiol groups in reduced, unfolded ribonuclease are oxidized to form intramolecular cystine cross-bridges, while thiol groups of typical cysteine enzymes, such as lactate and malate dehydrogenase, remain in their reduced state during refolding. The rate of reactivation of lactate dehydrogenase (porcine muscle) is not affected by GSSG. In the case of ribonuclease, increasing concentrations of GSSG increase the rate of reactivation: At 20 degrees C, the halftime of the correct disulfide bond formation varies from approximately equal to 80 h in the presence of 0.01 mM GSSG to approximately equal to 10 h in the presence of 0.25 mM GSSG. A further increase in the rate of reactivation at higher GSSG concentrations is accompanied by a decrease in yield. Reactivation of ribonuclease is also observed at the low glutathione level found in blood plasma (5-25 microM GSH).  相似文献   

14.
Seedlings of castor bean (Ricinus communis cv. Hale) were exposed to gibberellin A(3) (GA(3)) (100 micromolar) for periods up to 20 hours. Endosperm homogenates were fractionated on linear sucrose gradients and enzymes in mitochondria, glyoxysome, and cytosol fractions were assayed. Gibberellin treatment resulted in increases in the activities of enzymes in all three compartments. There were also enzymes in all three compartments which were not affected by exogenous applications of GA(3). The isozymes of l-asparate-alpha-ketoglutarate aminotransferase in both mitochondria and glyoxysomes were induced coordinately, whereas the isozymes of citrate synthase and malate dehydrogenase were not. All gluconeogenic enzymes in glyoxysomes are induced by GA(3). With the exception of the mitochondrial malate dehydrogenase isozyme, all enzymes of the tricarboxylic acid cycle believed to participate in glyconeogenesis were increased. The cytosolic enzymes malate dehydrogenase, phosphoenolpyruvate carboxykinase, and fructose bisphosphatase were induced, but the levels of pyruvate kinase and enolase were not affected by GA(3) treatment.  相似文献   

15.
Formation of a bienzyme complex of pig heart mitochondrial malate dehydrogenase and citrate synthase in a buffered system is demonstrated by means of a covalently attached fluorescent probe to citrate synthase. Assuming 1:1 stoichiometry of the enzymes in the complex, an apparent dissociation constant of 10(-6) M was calculated from fluorescence anisotropy measurements. The effect of various metabolites on the interaction was tested. NAD+, oxalacetate, citrate, ATP, and L(-)- or D(+)-malate had no effect on the association of the two enzymes, whereas alpha-ketoglutarate increased and NADH decreased it. The interaction of mitochondrial citrate synthase with cytosolic malate dehydrogenase was found to be much weaker, whereas interaction of citrate synthase with another cytosolic enzyme, aldolase, could not be detected. In kinetic experiments, the activation of malate dehydrogenase by citrate synthase was observed. The effect of pyridine nucleotides and alpha-ketoglutarate is discussed in relation to the direction of the metabolic flow of oxalacetate.  相似文献   

16.
Pig heart citrate synthase and mitochondrial malate dehydrogenase interact in polyethylene glycol solutions as indicated by increased solution turbidity. A large percentage of both enzymes sediments when mixtures of the two in polyethylene glycol are centrifuged, whereas little if any of either enzyme sediments in the absence of the other. The observed interaction is highly specific in that neither cytosolic malate dehydrogenase nor nine other proteins showed evidence of specific interaction with either pig heart citrate synthase or mitochondrial malate dehydrogenase. Escherichia coli citrate synthase did not interact with pig heart citrate synthase, but did show evidence of interaction with pig heart mitochondrial malate dehydrogenase. The relation between enzyme behavior in polyethylene glycol solution and in the mitochondrion and the significance of possible in vivo interactions between citrate synthase and mitochondrial malate dehydrogenase are discussed.  相似文献   

17.
The oxygen flux into the mitochondria of skeletal muscle increases with exercise. However, the extent of oxidative damage to mitochondrial proteins of skeletal muscle has only been estimated. We studied the alteration of reactive carbonyl derivatives (RCD) in mitochondrial and cytosolic fractions of skeletal muscle following 9 weeks of swimming training in rats. The RCD content of mitochondria was significantly elevated compared with the cytosolic fraction of both control and exercised animals. Accumulation of RCD in muscle mitochondria of the exercised group was also significantly elevated (P < 0.05). On the other hand, alteration of the accumulation of RCD was not apparent in the cytosolic fraction of skeletal muscle. The activity of proteasome complex, however, was increased in the cytosolic fraction of exercised muscle (P < 0.05). The data suggest that mitochondria of skeletal muscle accumulate significantly larger amounts of RCD than the cytosolic fraction and the tendency of the accumulation varies in cell fractions. Exercise training increases the accumulation of protein damage in mitochondria of skeletal muscle but cytosolic proteins are protected by increased activity of proteasome complex and possibly by other antioxidant enzymes.  相似文献   

18.
Sautter C  Hock B 《Plant physiology》1982,70(4):1162-1168
Monospecific antibodies to glyoxysomal, mitochondrial, and cytosolic I malate dehydrogenase were used for the fluorescence immunohistochemical localization of these isoenzymes in dark-grown watermelon (Citrullus vulgaris Schrad.) cotyledons. It was demonstrated that, with cell organelles isolated by sucrose density gradient centrifugation, antibodies to glyoxysomal malate dehydrogenase were specific markers for glyoxysomes, and similarly, antibodies to mitochondrial malate dehydrogenase were markers for mitochondria. The time course of the glyoxysomal malate dehydrogenase appearance and decline was not synchronous for the individual tissues and differed completely from that of the mitochondria. The cytosolic malate dehydrogenase I was confined to restricted regions of the lower epidermis. The activity which was definitively localized outside the cell organelles decreased during the first days of germination.  相似文献   

19.
This study describes the metabolic capacities of the African cichlid Pseudocrenilabrus multicolor victoriae from four sites in Uganda, East Africa. Fish were captured during the dry season, from two aquatic systems in different regions (Lake Nabugabo and Mpanga River). Within the Lake Nabugabo region, individuals were sampled from Lake Kayanja (normoxic) and Lwamunda Swamp (hypoxic); within the Mpanga River system, individuals were sampled from Bunoga and Kahunge (characterized by seasonal variation in dissolved oxygen (D.O.)). Enzyme activity levels of pyruvate kinase, lactate dehydrogenase, citrate synthase, and cytochrome C oxidase were measured in four tissues: white skeletal muscle, heart, brain, and liver. Two additional enzymes were measured in the liver, malate dehydrogenase and fructose 1,6-bisphosphatase. Regional differences between enzyme activities in most tissues were evident; however, little variation was observed between two sites within a region despite differences in D.O. In general, P. multicolor from the Mpanga River system displayed greater anaerobic enzyme activity in white skeletal muscle, lower gluconeogenic enzyme activity in the liver, and an overall higher enzyme activity in the heart and brain tissues than fish from the Nabugabo region. The latter may reflect a long-term adaptation to low-oxygen conditions at the metapopulation level in the Nabugabo region.  相似文献   

20.
Mitochondria isolated from the heart of cod (Gadus morrhua callarias) oxidized malate as the only exogenous substrate very rapidly. Pyruvate only slightly increased malate oxidation by these mitochondria. This is in contrast with the mitochondria isolated from rat and rabbit heart which oxidized malate very slowly unless pyruvate was added. Arsenite and hydroxymalonate (an inhibitor of malic enzyme) inhibited the respiration rate of mitochondria isolated from cod heart, when malate was the only exogenous substrate. Inhibition caused by hydroxymalonate was reversed by the addition of pyruvate. In the presence of arsenite, malate was converted to pyruvate by cod heart mitochondria. Cod heart mitochondria incubated in the medium containing Triton X-100 catalyzed the reduction of NADP+ in the presence of L-malate and Mn2+ at relatively high rate (about 160 nmoles NADPH formed/min/mg mitochondrial protein). The oxidative decarboxylation of malate was also taking place when NADP+ was replaced by NAD+ (about 25 nmol NADH formed per min per mg mitochondrial protein). These results suggest that the mitochondria contain both NAD+- and NADP+-linked malic enzymes. These two activities were eluted from DEAE-Sephacel as two independent peaks. It is concluded that malic enzyme activity (presumably both NAD+- and NADP+-linked) is responsible for the rapid oxidation of malate (as the only external substrate) by cod heart mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号