首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Studies were made on the effects of undernutrition at different ages during the neonatal period and of the comparative effects of postweaning protein and calorie deficiencies in neonatally undernourished or normally reared animals. Neonatal undernutrition resulted in deficits in body wt, brain wt and the activities of brain glutamate dehydrogenase and glutamate decarboxylase. Percentage deficits in brain wt were maximum in the first week of life but those in brain enzymes were greater in the second week. Rehabilitation of neonatally undernourished animals reversed the deficits in brain wt and brain enzymes. Post-weaning protein deficiency produced similar deficits in brain enzymes in both neonatally undernourished and normally reared animals. With post-weaning undernutrition, however, these deficits were found only in animals subjected to neonatal undernutrition as well.  相似文献   

2.
A Subramoniam 《Acta anatomica》1979,104(4):439-450
The heights of villi were less in all the segments of mildly undernourished (by increasing litter size) pups at 21 days of age, in comparison with controls, while the heights of villi in the duodenum and jejunum, but not in the ileum, were less in severely undernourished (by maternal protein deficiency) pups. Administration of hydrocortisone during 18--21 days of age to normal pups and to pups undernourished by maternal protein deficiency during lactation showed a marked reduction of villi heights in the ileum but not in other segments of the intestine. When the pups of protein-deficient mothers (during lactation) were fed on a normal diet during the post-weaning period, the villi in the ileum were found to be longer than those of controls. Superimposition of post-weaning protein deficiency over pre-weaning undernutrition only left the heights of ileal villi unaltered, but in other segments deficits in heights of villi were observed. These studies suggest that the suggested 'villi-reducing factor' did not appear in the ileum of severely undernourished pups even after the availability of an adequate nutrition in the post-weaning period, probably due to hydrocortisone deficiency at about 21 days of age, and that the hormone has a role in maintaining ileal villi heights. In addition to the heights of villi, other morphological retardations and alterations of enterocyte structure were observed in the severely undernourished intestine. These effects differed in different parts of the intestine and with the degree of neonatal undernutrition. Most of the morphological abnormalities showed a trend for recovery when a normal diet was given in the post-weaning period.  相似文献   

3.
Abstract— Studies were carried out to identify the minimum levels of protein (casein) needed in the diet in order to prevent or reverse the deficits in brain enzymes previously found with protein deficiency. Groups of weanling albino rats were fed diets containing variable amounts of protein (5, 8, 10, 15 or 20 per cent in experiment I, and 5, 6, 7, 8 or 20 per cent in experiment II) for 5 or 10 weeks. Deficits in brain wt and brain glutamate dehydrogenase and decarboxylase were found to be prevented by a diet containing 8 per cent or more of protein, although for optimum growth 15 per cent protein in the diet was found to be necessary. Groups of rats were fed a 5 or 20% protein diet for 10 weeks after which the 5% protein animals were either continued on the diet for another 10 weeks or changed to one containing 8, 10, 15 or 20% protein. The brain enzyme deficits found with the 5% protein diet were found to be fully reversed by feeding a 10% protein diet during rehabilitation.  相似文献   

4.
(1) Treatment with cortisol acetate (0.2 mg daily during the first 4 days after birth) reduced the rate of growth in the rat: at 35 days of age the body weight was reduced by 50 per cent and the brain weight, depending on the region, by up to 30 per cent. (2) In the brain the normal increase in cell number was severely inhibited during the period of cortisol treatment; this resulted in a final deficit in cell number of about 20 per cent in the cerebrum and 30 per cent in the cerebellum. (3) To determine whether cortisol affected primarily cell formation or cell destruction the labelling of brain DNA was studied 1 h after a subcutaneous injection of 20 Ci/100 g [2-14C]thymidine. In the controls the amount of labelled DNA increased by a factor of two in the cerebrum and seven in the cerebellum during the period 2-13 days, and it decreased to 40 and 27 per cent of the peak values in the cerebrum and cerebellum respectively in the following 7 days. The results indicated that mitotic activity is higher in the cerebellum than in the cerebrum in the 2nd week of life. It would appear that in the cerebrum appreciable cell death accompanies new cell formation, especially during the period 13-35 days of age. (4) Cortisol treatment affected cell division rather than cell destruction in the brain since it strongly inhibited the incorporation of [2-14C]thymidine into DNA. The inhibition was severe during the period of treatment but it did not result in a lasting fall in mitotic activity. At the age of 13 days the amount of labelled DNA formed approached the normal level and it was twice that in controls at 20 days, indicating a tendency for compensating cell deficit by an accelerated mitotic activity. Nevertheless, massive cell proliferation ceased at about the same age as in normals; the labelling of DNA decreased markedly between 13 and 20 days after birth, and the DNA content did not increase after the age of 20 days. (5) In contrast to the marked effect on cell number, cortisol treatment did not influence significantly the maturational changes related to average cell size (DNA concentration) or the chemical composition of cells (RNA/DNA and protein/DNA).  相似文献   

5.
BIOCHEMICAL EFFECTS OF THYROID DEFICIENCY ON THE DEVELOPING BRAIN   总被引:12,自引:1,他引:11  
Abstract— The effects of neonatal thyroidectomy on some constituents of the cerebrum, cerebellum and liver of the rat have been studied during the first 7 weeks of life. In the normal rat between the 6th and 14th post-natal days the RNA content per unit of DNA in the brain increased by 70 per cent. Although the brain continued to grow from the 14th to the 35th day, the amount of RNA relative to DNA decreased by about 20 per cent. The ratio of protein to DNA increased during the whole period studied and in the cerebral cortex it was more than trebled between the age of 6 and 35 days. The growth of the cerebellum extended over a longer period than that of the cerebrum, its weight increasing by 88 per cent between the ages of 14 and 35 days as compared with a cerebral increase of 34 per cent. The DNA content showed a 50 per cent increase during this period. Qualitatively these maturational changes were not affected by neonatal thyroidectomy. Quantitative changes, which applied equally to the cerebral cortex and brain as a whole, were observed. At the age of 35 days, the weights of the cerebral hemispheres and cerebellum were reduced by thyroidectomy by 20 per cent; the overall DNA content per organ did not change, but the amounts of protein and RNA relative to DNA decreased significantly. It is therefore inferred that thyroid deficiency affects the size of the cells in brain and cerebellum rather than their total number. Conversely, the cell population of the liver was only a quarter of that in the control. There was a small but significant decrease in the hepatic protein and RNA content in the hypothyroid animal. The activities of the following enzymes which served as markers for subcellular fractions in homogenates of cerebral cortex were determined: lactate dehydrogenase for the supernatant, glutamate dehydrogenase for the mitochondrial and glutamate decarboxylase for the synaptosomal fractions. When the activities were expressed on a fresh weight basis a significant decrease by comparison with the control values was observed only in the case of glutamate decarboxylase (—15 per cent at the age of 17–32 days); when the activities were based on DNA content all values were reduced, probably as a result of the general decrease in cell size. Pyrimidine metabolism of brain and liver, studied after the administration of [6-14C]-orotic acid, was not affected in either tissue by neonatal thyroidectomy. A small but significant reduction in the incorporation of labelled pyrimidine nucleotides in liver RNA was observed, but no significant decrease in the incorporation in cerebral RNA was found in the hypothyroid rats.  相似文献   

6.
Abstract— The continuous exposure of newborn rats to 70–80 per cent oxygen at atmospheric pressure throughout the iirst 9 days of life significantly inhibited the growth of the brain which normally occurs during this period of life. The accumulations of DNA, RNA, total protein, and proteolipid protein which accompany brain growth during this period were all approximately proportionately depressed by the oxygen-enriched atmosphere. RNA/DNA and protein/DNA ratios were unaffected. The increase in brain mass in the first week of life reflects mainly cell proliferation, and since the decreased DNA accumulation occurred with no changes in RNA/DNA and protein/DNA ratios, we conclude that the effect of oxygen was to inhibit cellular division. We estimate that the oxygen exposure caused an approximately 7 per cent deficit in the cell population of the brain. These results indicate that the use of elevated concentrations of oxygen may have serious deleterious effects on the growth and development of the brain.  相似文献   

7.
The effect of defined lead burdens on myelination of the central and peripheral nervous systems was studied in neonatal Long-Evans rats. Pups were exposed to inorganic lead (100 or 400 mg Pb as lead acetate/kg body wt/day by gastric intubation) from day 2 following birth to 30 days of age. Accumulation of myelin in forebrain was not affected by the 100-mg dosage, but at the 400 mg/kg dosage level, myelin accumulation was reduced by approximately 42% on a per gram forebrain basis relative to vehicle-intubated animals. The deficit was over 50% on a per forebrain basis, since there was also a slight reduction in brain weight. This lead effect was observed at both 15 and 30 days of age. Accumulation of myelin in optic nerve (determined on the basis of proteolipid protein concentration) was also reduced by 30% relative to controls by this dosage level. However, myelination in sciatic nerve (determined on the basis of P0 protein concentration) was not affected by this exposure regimen. Myelin deficits were greater than could be accounted for by undernutrition arising secondary to lead exposure and were not due to a developmental delay in the onset of myelination.  相似文献   

8.
EFFECT OF UNDERNUTRITION ON CELL FORMATION IN THE RAT BRAIN   总被引:4,自引:2,他引:2  
Abstract— Rats were undernourished by approximately halving the normal food given from the 6th day of gestation throughout lactation. Growth of the foetuses was nearly normal, in marked contrast to the severe retardation caused by undernutrition during the suckling period. In comparison with controls the size and the DNA content of the brain were permanently reduced by undernutrition during the suckling period: this effect was relatively small, approx. 15 per cent decrease at 21 and 35 days. The rate of 14C incorporation into brain DNA at 30 min after administration of [2-14C] thymidine was taken as an index of mitotic activity; compared with controls there was severe reduction in mitotic activity (maximal decrease by about 80 per cent at 6 days in the cerebrum and by 70 per cent at 10 days in the cerebellum). The rate of acquisition of cells was calculated from the slopes of the logistic curves fitted to the estimated DNA contents. In normal animals the maximal slope was attained at 2·7 days and at 12·8 days after birth in cerebrum and cerebellum respectively; the daily acquisition of cells at these times was 4·8 × 106 and 18 × 106 cells respectively. The fractional increase in cell number at the maximum was 5·4 percent per day in the cerebrum and 15·2 per cent per day in the cerebellum. The rate of acquisition of cells relative to the rate of mitotic activity was higher in the brains of undernourished animals than in controls. One of the compensatory mechanisms for the severe depression of mitotic activity in the brain of undernourished animals Seems to involve a reduction in the normal rate of cell loss.  相似文献   

9.
The brain lipid composition of 25-day-old offspring of rats exposed to dietary thiamine (vitamin B1) deficiency from the 14th day of gestation was examined and compared to normal and pair-fed (undernourished) controls. Thiamine-deprived rats displayed neurological signs and a marked diminution of growth at 25 days of age. No changes in brain lipids of either whole brain or selected brain areas (brain stem, cerebellum, diencephalon) which were distinct from the effects of undernutrition (pair-fed controls) were observed in the thiamine-deficient group. Undernutrition, as exemplified by the pair-fed control group produced a highly significant depression of all lipids expressed per total brain and a significant deficit of whole brain and regional lipid, cerebroside and cholesterol concentrations indicating a deficiency in myelinogenesis. Ganglioside NeuNAc concentration was shown to be significantly greater in whole brain and certain brain areas of the same group while no changes were evident in total phospholipid concentration and the distribution of individual phospholipids. The implications of these findings in terms of the pathophysiology of thiamine-deficiency encephalopathy and undernutrition in early life are discussed.  相似文献   

10.
Abstract— The effect of stimulating the electric organ of Torpedo marmorata , anaesthetized with 0.01% Tricaine methane sulphonate, by means of electrical stimulation (5/s) administered via an electrode placed on the electric lobe has been studied electrophysiologically, biochemically and morphologically. The response of the organ declined to about 50 per cent of its initial value after about 500 stimuli, by a further 10 per cent after another 500 stimuli and then to about 12 per cent of the initial value after a further 1000 stimuli. Thereafter the response fell off progressively. However, even when the response was less than 1 per cent of its initial value, the organ had considerable powers of recuperation during a 30-s rest period, to 30–50 per cent of its initial value.
The fall in response was accompanied by a reduction in vesicle size and number, an increase in the area of the presynaptic membrane and a fall in the protein, total nucleotide, ATP and acetylcholine content of the vesicle fraction isolated from the stimulated tissue. However, whereas vesicle numbers and the protein and total nucleotide content of the vesicle fraction fell by only about 50 per cent, vesicular ATP and acetylcholine levels were reduced to about 10 per cent. An analysis of the covariance of vesicular ATP and acetylcholine showed an initial loss of an acetylcholine-rich (relative to ATP) population of vesicles. The early loss of vesicular protein and nucleotide and vesicle numbers as well as the morphological changes seen would be consistent with a loss of vesicles due to fusion with the external membrane. The preferential loss of acetylcholine and ATP from the vesicle fraction indicates that the vesicles surviving the stimulation procedure have been utilized in a number of cycles causing the progressive fall in vesicle volume, and acetylcholine and ATP content.  相似文献   

11.
Abstract— Acetylcholine, choline and choline acetyltransferase activity were measured in the whole brains of normal and hypothyroid rats during development. At 1 day postpartum, brain acetylcholine was 73 per cent of adult levels. Propylthiouracil-induced hypothyroidism up to age 20 days did not alter brain acetylcholine concentrations, but at 30 days resulted in significantly decreased levels. At day 1, brain choline was 20 per cent higher than adult levels and decreased between days 8 and 10. In hypothyroid rats this phenomenon did not occur until days 15–20. At day 1 postnatally, choline acetyltransferase activity was only 7 per cent of adult levels, then between days 5 and 20 rose to 77 per cent of adult levels. Beginning at day 8, hypothyroidism resulted in significantly decreased enzyme levels. This effect could be reversed at day 17 by concurrent tri-iodothyronine substitution therapy. In hypothyroid rats, maximum brain choline acetyltransferase activity was 30 per cent less than normal adult levels.  相似文献   

12.
Abstract— The severity of mental changes in malnourished children is related to both the period of development when the malnutrition occurs and the amount of environmental stimulation. In the present study the effect of imposing protein undernutrition during the period of gestation or postweaning period, and protein-energy undernutrition during the suckling period on cholinergic enzyme activity was investigated in the rat. Six different dietary treatments were given and the activity of ChAc, ChE, and AChE determined in the forebrain, brainstem, and cerebellum of male rats on day 49. Undernutrition imposed during gestation, suckling or postweaning all resulted in changes in cholinergic enzyme activity. The direction and degree of change of enzyme activity depended on the period when undernutrition was imposed as well as the brain region. In the forebrain ChE and AChE activities were altered, in the brainstem, ChAc, ChE and AChE activities were altered, and in the cerebellum ChAc activity was altered. The effect on the activity of the individual cholinergic enzymes was complex and was not the same in the different regions of the brain or even for the same brain region exposed to undernutrition during different periods of development. These results along with earlier work indicate that cholinergic enzyme activity in brain of undernourished rats can be altered by both the period of development when undernutrition is imposed and the amount of environmental stimulation.  相似文献   

13.
Suckling rats were injected subcutaneously with doses of L-ethionine (0.1 mumole/g body wt) at intervals of 12 hr. In the latter group, phenylalanine hydroxylase was effectively inhibited in vivo resulting in hyperphenylalaninemia and phenylketonuria. Due to the well-known sex-specific differences in L-ethionine metabolism female rats were much more affected by chronic administration of L-ethionine. The underlying mechanism of enzyme inhibition by ethionine could be disturbed protein synthesis and impaired protein phosphorylation, which was suggested by pronounced decreases in ATP content in liver. In the high dosage group depletions mainly of the branched-chain amino acids and lysine occurred in serum and brain, whereas the concentrations of methionine and tryptophan were increased. Tyrosine tended to be decreased in the course of hyperphenylalaninemia. Hyperphenylalaninemia and other resulting amino acid imbalances obviously impaired brain development during the early postnatal period. Concomitantly with reductions in protein concentrations, the activity of cathepsin D, a major intralysosomal acid proteinase, was increased in brain, suggesting also higher protein catabolism in brain. Side effects of this treatment, however, were higher mortality, loss of body weight, and a general impression of delayed development, resembling a state of undernutrition to some extent. These obvious side effects of ethionine limit the usefulness of ethionine as a suitable model for classic phenylketonuria in suckling rats.  相似文献   

14.
Abstract— It is shown that transketolase activities in red blood cells and whole brain of normal and thiamine-deficient rats correlate well with heart frequencies.
The effect of thiamine depletion on the levels of acetylcoenzyme A (acetyl-CoA) and acetylcholine (ACh), and on the activities of pyruvate dehydrogenase, choline acetyl-transferase and acetylcholine esterase was studied in whole brains of thiamine-deficient, thiamine-supplemented ad libitum and pair-fed rats. The concentrations of acetyl-CoA and ACh decreased in thiamine-deficient brains by 42 and 35 per cent, respectively.
Total pyruvate dehydrogenase activity did not change during vitamin B1 deficiency. The 'resolved' enzyme, reconstituted with thiamine diphosphate, had an association constant of 5.4 × 10−6 m . Choline acetyltransferase and acetylcholine esterase activities remained unchanged in thiamine deficiency.
Possible mechanisms which could explain the reduced Ach levels in vitamin B1 deficiency are discussed.  相似文献   

15.
Abstract: Copper deficiency was induced in post-weaning rats by feeding the dams a low copper diet during gestation and lactation. In confirmation of an earlier study, both dopamine and norepinephrine concentrations in the total brain were approximately 30% lower in deficient than in control rats. Doparnine in the corpus striaturm was depressed nearly 60%, but the concentration of norepinephrine in the hypothalamus was unchanged. Tyrosine concentrations in the striatum, hypothalamus, and total brain were not affected by copper deficiency, suggesting a catalytic defect rather than lack of substrate. Copper repletion restored norepinephrine level in total brain but did not affect the low level of dopamine. The results suggest that copper deficiency depresses a catalytic function of the adrenergic pathways and, further, adversely affects a structural component of the dopaminergic system during development.  相似文献   

16.
—Incubation of slices of rat central nervous system in Krebs-Ringer bicarbonate buffer produced a lipoprotein fraction which floated on 10·5% sucrose after homogenization of the slices and centrifugation. This fraction was not found after homogenization and centrifugation of fresh tissue and appeared to depend upon incubation. The amount of the light fraction increased in the following order per 100-mg slice: cerebrum < thalamic area < cerebellum < brain stem < spinal cord. The lipid composition of this fraction was similar to that of myelin, but contained a lower protein content compared to myelin of the corresponding area. This fraction was termed ‘dissociated myelin’. Upon incubation of slices a portion of the basic protein was lost from myelin subsequently isolated, and the dissociated fraction was slightly enriched in basic protein. The distribution of myelin protein among the characteristic three groups (basic, proteolipid and high mol. wt.) was quite different in myelin from spinal cord compared to that from other CNS area. Spinal cord myelin contained about 17% protein compared to about 23% in cerebrum, with brain stem myelin intermediate (19%), and the difference appeared to be due to lesser amounts of proteolipid in the caudal areas. The amount of dissociation after incubation was about 3–5 per cent of the total myelin in the cerebral cortex, 10 per cent in the thalamic area, 20 per cent in cerebellum, 35 per cent in the brain stem, and around 45 per cent in spinal cord. The smaller amount of proteolipid protein in spinal cord myelin may result in a deficiency of cohesive forces holding lipids and proteins together, thus causing greater instability and dissociation. Myelin dissociation increased with time of incubation up to 3 h, was augmented by Ca2+, and was substantial at pH 11, reaching a peak at pH 7, then decreased in the acid range. A similar fraction has been isolated previously from fresh CNS tissue made edematous by chronic treatment of rats with triethyl tin. The possible relationship of swelling in the disease process and myelin dissociation are discussed.  相似文献   

17.
D Gripois  C Fernandez 《Enzyme》1977,22(6):378-384
The evolution of monoamine oxidase (MAO) activity towards tryptamine has been studied from birth to 20 days post-natal in the brain and heart of male rats. Hyperthyroidism was induced by thyroxine injections and hypothyroidism by PTU administration. The results are expressed per unit of fresh weight and per unit of protein weight. Cardiac MAO is higher in the hyperthyroid animals than in controls as soon as 5 days following birth; the difference between the 2 groups increases until 20 days. The deficiency in thyroid hormones, on the other hand, was followed by a slight decrease in the cardiac enzyme, this decrease reflecting the general deficit in protein synthesis. Brain MAO is not affected by hyperthyroidism, but a clear deficit follows PTU administration. This deficit is significant beginning at 10 days and the difference between the 2 groups increases up to 20 days. The effects of PTU-induced hypothyroidism can be corrected by thyroxine injections. Except for the decrease in the level of cardiac enzyme in hypothyroid animals, all the effects on MAO activity are independent of the total protein content of both organs.  相似文献   

18.
Of the total protein in an adult mouse brain, 35 per cent is water-soluble and 65 per cent water-insoluble. Using an extraction scheme of sequential treatment with water, Triton X-100, and sodium lauryl sulphate, it was possible to solubilize at least 90 per cent of this total in distinct groups. Qualitative analysis of the extracts was achieved by electro-phoresis in porosity gradient polyacrylamide gels. In this way, each fraction was resolved into 20-50 protein bands. This sequential extraction-fractionation procedure was employed in a study of the onto-genetic changes in mouse brain proteins. The most pronounced accumulation of protein and alteration of protein composition occurred during the first few weeks after birth. Beyond that period, both quantitative and qualitative changes were much less dramatic, except in the 1 % SLS fraction, which continued to increase in size throughout the mouse's lifespan. Whereas the aqueous-soluble proteins predominated during the very early stages of development, the detergent-soluble constituents accounted subsequently for a steadily increasing proportion of the total protein.  相似文献   

19.
S D Bhandari 《Enzyme》1982,27(2):81-88
Studies were made of the effects of pre- and post-weaning undernutrition and/or protein deficiency on intestinal phytase and phosphatase activities in albino rats and reversibility of the same by subsequent dietary rehabilitation. Neonatal undernutrition induced by rearing the pups in litters of 16 caused a marked decrease in alkaline phytase activity (as compared to those reared in litters of 8), while acid phytase activity decreased to a lesser extent and acid and alkaline phosphatase activities did not change. When neonatally undernourished rats were subsequently continued on a 4 or a 20% protein diet in restricted amounts (2.5 g/day) for 6 weeks the decreases in the alkaline phytase activity but not in that of acid phytase were further aggravated. Acid and alkaline phosphatases were not influenced by these treatments either. On dietary rehabilitation of these rats for subsequent 6 weeks on a 20% protein diet (ad libitum) acid and alkaline phytase activities of intestine recovered partially. These studies indicate the importance of alkaline phytase activity as a marker of intestinal maturation and is also suggestive of interrelationships between nutrition, intestinal development and its alkaline phytase activity.  相似文献   

20.
The average yield of mucopolysaccharides isolated from adult cat brain was 3.29 mg, representing 0.02 per cent of the wet wt. of brain tissue. The lipid-free dried brain was approximately 10 per cent of the wet brain tissue weight. Mucopolysaccharide fraction distributions and concentration ratios are presented. Chronic administration of testicular hyaluronidase to adult cats resulted in an advanced stage of neurological impairment, a decrease in hyaluronic acid to about 40 per cent of the control value, and an even slightly greater decrease in chondroitin sulphate. With limited hyaluronidase injections, neurological impairment was milder; mucopolysaccharide concentrations after four doses of hyaluronidase decreased to approximately the same level as in chronic experimental cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号