首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-directed monoclonal antibodies (mAbs) may interact with their antigens, leading to stabilization, refolding, and suppression of aggregation. In the following study, we show that mAbs raised against the peptide 106-126 of human prion protein (PrP 106-126) modulate the conformational changes occurring in the peptide exposed to aggregation conditions. MAbs 3-11 and 2-40 prevent PrP 106-126's fibrillar aggregation, disaggregates already formed aggregates, and inhibits the peptide's neurotoxic effect on the PC12 cells system, while mAb 3F4 has no protective effect. We suggest that there are key positions within the PrP 106-126 molecule where unfolding is initiated and their locking with specific antibodies may maintain the prion peptide native structure, reverse the aggregated peptide conformation, and lead to rearrangements involved in the essential feature of prion diseases.  相似文献   

2.
The neurodegeneration seen in spongiform encephalopathies is believed to be mediated by protease-resistant forms of the prion protein (PrP). A peptide encompassing residues 106-126 of human PrP has been shown to be neurotoxic in vitro. The neurotoxicity of PrP106-126 appears to be dependent upon its adoption of an aggregated fibril structure. To examine the role of the hydrophobic core, AGAAAAGA, on PrP106-126 toxicity, we performed structure-activity analyses by substituting two or more hydrophobic residues for the hydrophilic serine residue to decrease its hydrophobicity. A peptide with a deleted alanine was also synthesized. We found all the peptides except the deletion mutant were no longer toxic on mouse cerebellar neuronal cultures. Circular dichroism analysis showed that the nontoxic PrP peptides had a marked decrease in beta-sheet structure. In addition, the mutants had alterations in aggregability as measured by turbidity, Congo red binding, and fibril staining using electron microscopy. These data show that the hydrophobic core sequence is important for PrP106-126 toxicity probably by influencing its assembly into a neurotoxic structure. The hydrophobic sequence may similarly affect aggregation and toxicity observed in prion diseases.  相似文献   

3.
The abnormal form of the prion protein (PrP) is believed to be responsible for the transmissible spongiform encephalopathies. A peptide encompassing residues 106-126 of human PrP (PrP106-126) is neurotoxic in vitro due its adoption of an amyloidogenic fibril structure. The Alzheimer's disease amyloid beta peptide (Abeta) also undergoes fibrillogenesis to become neurotoxic. Abeta aggregation and toxicity is highly sensitive to copper, zinc, or iron ions. We show that PrP106-126 aggregation, as assessed by turbidometry, is abolished in Chelex-100-treated buffer. ICP-MS analysis showed that the Chelex-100 treatment had reduced Cu(2+) and Zn(2+) levels approximately 3-fold. Restoring Cu(2+) and Zn(2+) to their original levels restored aggregation. Circular dichroism showed that the Chelex-100 treatment reduced the aggregated beta-sheet content of the peptide. Electron paramagnetic resonance spectroscopy identified a 2N1S1O coordination to the Cu(2+) atom, suggesting histidine 111 and methionine 109 or 112 are involved. Nuclear magnetic resonance confirmed Cu(2+) and Zn(2+) binding to His-111 and weaker binding to Met-112. An N-terminally acetylated PrP106-126 peptide did not bind Cu(2+), implicating the free amino group in metal binding. Mutagenesis of either His-111, Met-109, or Met-112 abolished PrP106-126 neurotoxicity and its ability to form fibrils. Therefore, Cu(2+) and/or Zn(2+) binding is critical for PrP106-126 aggregation and neurotoxicity.  相似文献   

4.
There is increasing evidence that soluble oligomers of misfolded protein may play a role in the pathogenesis of protein misfolding diseases including the transmissible spongiform encephalopathies (TSE) where the protein involved is the prion protein, PrP. The effect of oxidation on fibrillation tendency and neurotoxicity of different molecular variants of the prion peptide PrP106-126 was investigated. It was found that methionine oxidation significantly reduced amyloid fibril formation and proteinase K resistance, but it did not reduce (but rather increase slightly) the neurotoxicity of the peptides in vivo (electroretinography after intraocular injections in mice) and in vitro (in primary neuronal cultures). We furthermore found that the bovine variant of PrP106-126, containing only one methionine residue, showed both reduced fibril forming capacity and in vivo and in vitro neurotoxicity. The findings imply (I) that there is not a simple relation between the formation of amyloid fibrils and neurotoxicity of PrP106-126 derived peptides, (II) that putative, soluble, non-amyloid protofibrils, presumed to be present in increased proportions in oxidized PrP106-126, could play a role in the pathogenesis of TSE and III) that the number of methionine residues in the PrP106-126 peptide seems to have a pivotal role in determining the physical and biological properties of PrP106-126.  相似文献   

5.
Acetylcholinesterase (AChE), a senile plaque component, promotes amyloid-beta-protein (Abeta) fibril formation in vitro. The presence of prion protein (PrP) in Alzheimer's disease (AD) senile plaques prompted us to assess if AChE could trigger the PrP peptides aggregation as well. Consequently, the efficacy of AChE on the PrP peptide spanning-residues 106-126 aggregation containing a coumarin fluorescence probe (coumarin-PrP 106-126) was studied. Kinetics of coumarin-PrP 106-126 aggregation showed a significant increase of maximum size of aggregates (MSA), which was dependent on AChE concentration. AChE-PrP 106-126 aggregates showed the tinctorial and optical amyloid properties as determined by polarized light and electronic microscopy analysis. A remarkable inhibition of MSA was obtained with propidium iodide, suggesting that AChE triggers PrP 106-126 and Abeta aggregation through a similar mechanism. Huprines (AChE inhibitors) also significantly decreased MSA induced by AChE as well, unveiling the potential interest for some AChE inhibitors as a novel class of potential anti-prion drugs.  相似文献   

6.
The aetiological agent of prion disease is proposed to be an aberrant isoform of the cell surface glycoprotein known as the prion protein (PrPc). This pathological isoform (PrPSc) is abnormally deposited in the extracellular space of diseased CNS. Neurodegeneration in these disease has been shown to be associated with accumulation of PrPSc in affected tissue. To investigate the possible uptake mechanisms that may be required for PrPSc-induced neurodegeneration we studied the cellular trafficking of the neurotoxic fragment, PrP106-126. We were able to detect, by fluorescence microscopy, PrP106-126 inclusions in murine neurones, astrocytes and microglia in vitro. These inclusions were abundant after 24 hour exposure and still present 48h post-exposure. Shorter exposure times yielded only occasional cells with inclusions. Large extracellular aggregates of PrP106-126 could also be detected, which appeared in a time dependent manner. The appearance of inclusions or aggregates was not dependent on PrPc expression as determined by exposure of peptides from PrP-null mice. Using transmission electron microscopy and gold particle detection, positively labelled osmiophilic inclusions of peptide could be detected in the cytoplasm of exposed cells. These results demonstrate that cultured cells are capable of sequestering PrP106-126 and may indicate uptake pathways for PrPSc in various cell types. Toxicity of PrP106-126 may thus be mediated via a sequestration pathway that is not effective for this peptide in PrP-null cells.  相似文献   

7.
Kouadir M  Yang L  Tan R  Shi F  Lu Y  Zhang S  Yin X  Zhou X  Zhao D 《PloS one》2012,7(1):e30756
Microglial activation is a characteristic feature of the pathogenesis of prion diseases. The molecular mechanisms that underlie prion-induced microglial activation are not very well understood. In the present study, we investigated the role of the class B scavenger receptor CD36 in microglial activation induced by neurotoxic prion protein (PrP) fragment 106-126 (PrP(106-126)). We first examined the time course of CD36 mRNA expression upon exposure to PrP(106-126) in BV2 microglia. We then analyzed different parameters of microglial activation in PrP(106-126)-treated cells in the presence or not of anti-CD36 monoclonal antibody (mAb). The cells were first incubated for 1 h with CD36 monoclonal antibody to block the CD36 receptor, and were then treated with neurotoxic prion peptides PrP(106-126). The results showed that PrP(106-126) treatment led to a rapid yet transitory increase in the mRNA expression of CD36, upregulated mRNA and protein levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α), increased iNOS expression and nitric oxide (NO) production, stimulated the activation of NF-κB and caspase-1, and elevated Fyn activity. The blockade of CD36 had no effect on PrP(106-126)-stimulated NF-κB activation and TNF-α protein release, abrogated the PrP(106-126)-induced iNOS stimulation, downregulated IL-1β and IL-6 expression at both mRNA and protein levels as well as TNF-α mRNA expression, decreased NO production and Fyn phosphorylation, reduced caspase-1 cleavage induced by moderate PrP(106-126)-treatment, but had no effect on caspase-1 activation after treatment with a high concentration of PrP(106-126). Together, these results suggest that CD36 is involved in PrP(106-126)-induced microglial activation and that the participation of CD36 in the interaction between PrP(106-126) and microglia may be mediated by Src tyrosine kinases. Our findings provide new insights into the mechanisms underlying the activation of microglia by neurotoxic prion peptides and open perspectives for new therapeutic strategies for prion diseases by modulation of CD36 signaling.  相似文献   

8.
In vivo cytotoxicity of the prion protein fragment 106-126   总被引:6,自引:0,他引:6  
Transmissible spongiform encephalopathies are fatal neurological diseases characterized by astroglyosis, neuronal loss, and by the accumulation of the abnormal isoform of the prion protein. The amyloid prion protein fragment 106-126 (P106-126) has been shown to be toxic in cultured hippocampal neurons (). Here, we show that P106-126 is also cytotoxic in vivo. Taking advantage of the fact that retina is an integral part of the central nervous system, the toxic effect of the peptide was investigated by direct intravitreous injection. Aged solutions of P106-126 induced apoptotic-mediated retinal cell death and irreversibly altered the electrical activity of the retina. Neither apoptosis nor electroretinogram damages were observed with freshly diluted P106-126, suggesting that the toxicity is linked to the aggregation state of the peptide. The retina provides a convenient in vivo system to look for potential inhibitors of cytotoxicity associated with spongiform encephalopathies.  相似文献   

9.
Transmissible spongiform encephalopathies, also called prion diseases, are characterized by neuronal loss linked to the accumulation of PrP(Sc), a pathologic variant of the cellular prion protein (PrP(C)). Although the molecular and cellular bases of PrP(Sc)-induced neuropathogenesis are not yet fully understood, increasing evidence supports the view that PrP(Sc) accumulation interferes with PrP(C) normal function(s) in neurons. In the present work, we exploit the properties of PrP-(106-126), a synthetic peptide encompassing residues 106-126 of PrP, to investigate into the mechanisms sustaining prion-associated neuronal damage. This peptide shares many physicochemical properties with PrP(Sc) and is neurotoxic in vitro and in vivo. We examined the impact of PrP-(106-126) exposure on 1C11 neuroepithelial cells, their neuronal progenies, and GT1-7 hypothalamic cells. This peptide triggers reactive oxygen species overflow, mitogen-activated protein kinase (ERK1/2), and SAPK (p38 and JNK1/2) sustained activation, and apoptotic signals in 1C11-derived serotonergic and noradrenergic neuronal cells, while having no effect on 1C11 precursor and GT1-7 cells. The neurotoxic action of PrP-(106-126) relies on cell surface expression of PrP(C), recruitment of a PrP(C)-Caveolin-Fyn signaling platform, and overstimulation of NADPH-oxidase activity. Altogether, these findings provide actual evidence that PrP-(106-126)-induced neuronal injury is caused by an amplification of PrP(C)-associated signaling responses, which notably promotes oxidative stress conditions. Distorsion of PrP(C) signaling in neuronal cells could hence represent a causal event in transmissible spongiform encephalopathy pathogenesis.  相似文献   

10.
A peptide corresponding to residues 106-126 of the human prion protein (PrP) possesses the neurotoxic and amyloidogenic properties of the infectious form of the parental protein. This peptide is now identified as a 'difficult sequence' and synthesis using conventional manual Fmoc chemistry was unsuccessful with acylation terminating at a central core of hydrophobic amino acids. The use of tetramethylfluoroformamidinium hexafluorophosphate and 1-methyl-2- pyrrolidone as anti-aggregatory agents in the coupling steps improved the synthesis but still resulted in an incomplete peptide. The incorporation of N-(2-hydroxy-4-methoxybenzyl) protection at glycine residues 119 and 124 enabled synthesis of the full length peptide in low yield. Synthesis using Boc chemistry with in situ neutralisation gave the full length peptide in high yield.  相似文献   

11.
The fragment 106-126 of prion protein exhibits similar properties to full-length prion. Experiments have shown that the A117V mutation enhances the aggregation of PrP106-126, while the H111S mutation abolishes the assembly. However, the mechanism of the change in the aggregation behavior of PrP106-126 upon the two mutations is not fully understood. In this study, replica exchange molecular dynamics simulations were performed to investigate the conformational ensemble of the WT PrP106-126 and its two mutants A117V and H111S. The obtained results indicate that the three species are all intrinsically disordered but they have distinct morphological differences. The A117V mutant has a higher propensity to form β-hairpin structures than the WT, while the H111S mutant has a higher population of helical structures. Furthermore, the A117V mutation increases the hydrophobic solvent accessible surface areas of PrP106-126 and the H111S mutation reduces the exposure of hydrophobic residues. It can be concluded that the difference in populations of β-hairpin structures and the change of hydrophobic solvent accessible areas may induce the different aggregation behaviors of the A117V and the H111S mutated PrP106-126. Understanding why the two mutations have contrary effects on the aggregation of PrP106-126 is very meaningful for further elucidation of the mechanism underlying aggregation and design of inhibitor against aggregation process.  相似文献   

12.
One of the major pathological hallmarks of transmissible spongiform encephalopathies (TSEs) is the accumulation of a pathogenic (scrapie) isoform (PrP(Sc)) of the cellular prion protein (PrP(C)) primarily in the central nervous system. The synthetic prion peptide PrP106-126 shares many characteristics with PrP(Sc) in that it shows PrP(C)-dependent neurotoxicity both in vivo and in vitro. Moreover, PrP106-126 in vitro neurotoxicity has been closely associated with the ability to form fibrils. Here, we studied the in vivo neurotoxicity of molecular variants of PrP106-126 toward retinal neurons using electroretinographic recordings in mice after intraocular injections of the peptides. We found that amidation and structure relaxation of PrP106-126 significantly reduced the neurotoxicity in vivo. This was also found in vitro in primary neuronal cultures from mouse and rat brain. Thioflavin T binding studies showed that amidation and structure relaxation significantly reduced the ability of PrP106-126 to attain fibrillar structures in physiological salt solutions. This study hence supports the assumption that the neurotoxic potential of PrP106-126 is closely related to its ability to attain secondary structure.  相似文献   

13.
Amyloid-like fibrils have been associated with the pathogenesis of human prion diseases. Prion peptide of aa 106-126 (PrP106-126) exhibits many PrP(Sc)-like biochemical features, forming amyloid-like fibrils in vitro. Here, we found that the recombinant yeast-derived molecular chaperon Hsp104 inhibited significantly the fibril assembly of the synthetic PrP106-126 peptide by dynamic ThT assays in vitro. EM assays revealed almost no fibril-like structure after incubation of the synthetic PrP106-126 peptides with Hsp104 for 12h. Circular dichroism assays identified that treatment of Hsp104 shifted the secondary structure of PrP106-126 fibrils from β-sheet to a random coil. MTT tests confirmed that interaction of PrP106-126 with Hsp104 maintained the toxicity of PrP106-126 on human neuroblastoma cell line SK-N-SH. Additionally, Hsp104 was able to disassemble the mature PrP106-126 fibrils in vitro, leading to recovering the cytotoxicity of PrP106-126 on SK-N-SH cells. Our study provides the molecular evidences that the yeast-derived Hsp104 can interfere in the fibril assembly and disassembly of human PrP106-126 segment.  相似文献   

14.
Summary A peptide corresponding to residues 106–126 of the human prion protein (PrP) possesses the neurotoxic and amyloidogenic properties of the infectious form of the parental protein. This peptide is now identified as a ‘difficult sequence’ and synthesis using conventional manual Fmoc chemistry was unsuccessful with acylation terminating at a central core of hydrophobic amino acids. The use of tetramethylfluoroformamidinium hexafluorophosphate and 1-methyl-2-pyrrolidone as anti-aggregatory agents in the coupling steps improved the synthesis but still resulted in an incomplete peptide. The incorporation ofN-(2-hydroxy-4-methoxybenzyl)protection at glycine residues 119 and 124 enabled synthesis of the full length peptide in low yield. Synthesis using Boc chemistry within situ neutralisation gave the full length peptide in high yield.  相似文献   

15.
Miura T  Yoda M  Takaku N  Hirose T  Takeuchi H 《Biochemistry》2007,46(41):11589-11597
The conformational conversion of prion protein (PrP) from an alpha-helix-rich normal cellular isoform (PrPC) to a beta-sheet-rich pathogenic isoform (PrPSc) is a key event in the development of prion diseases, and it takes place in caveolae, cavelike invaginations of the plasma membrane. A peptide homologous to residues 106-126 of human PrP (PrP106-126) is known to share several properties with PrPSc, e.g., the capability to form a beta-sheet and toxicity against PrPC-expressing cells. PrP106-126 is thus expected to represent a segment of PrP that is involved in the formation of PrPSc. We have examined the effect of lipid membranes containing negatively charged ganglioside, an important component of caveolae, on the secondary structure of PrP106-126 by circular dichroism. The peptide forms an alpha-helical or a beta-sheet structure on the ganglioside-containing membranes. The beta-sheet content increases with an increase of the peptide:lipid ratio, indicating that the beta-sheet formation is linked with self-association of the positively charged peptide on the negatively charged membrane surface. Analogous beta-sheet formation is also induced by membranes composed of negatively charged and neutral glycerophospholipids with high and low melting temperatures, respectively, in which lateral phase separation and clustering of negatively charged lipids occur as shown by Raman spectroscopy. Since ganglioside-containing membranes also exhibit lateral phase separation, clustered negative charges are concluded to be responsible for the beta-sheet formation of PrP106-126. In caveolae, clustered ganglioside molecules are likely to interact with the residue 106-126 region of PrPC to promote the PrPC-to-PrPSc conversion.  相似文献   

16.
A major hallmark of prion diseases is the cerebral amyloid accumulation of the pathogenic PrP(Sc), an abnormally misfolded, protease-resistant, and beta-sheet rich protein. PrP106-126 is the key domain responsible for the conformational conversion and aggregation of PrP. It shares important physicochemical characteristics with PrP(Sc) and presents similar neurotoxicity as PrP(Sc). By combination of fluorescence polarization, dye release assay and in situ time-lapse atomic force microscopy (AFM), we investigated the PrP106-126 amide interacting with the large unilamellar vesicles (LUVs) and the supported lipid bilayers (SLBs). The results suggest that the interactions involve a poration-mediated process: firstly, the peptide binding results in the formation of pores in the membranes, which penetrate only half of the membranes; subsequently, PrP106-126 amide undergoes the poration-mediated diffusion in the SLBs, represented by the formation and expansion of the flat high-rise domains (FHDs). The possible mechanisms of the interactions between PrP106-126 amide and lipid membranes are proposed based on our observations.  相似文献   

17.
Prion diseases are transmissible and fatal neurodegenerative disorders which involve infiltration and activation of mononuclear phagocytes at the brain lesions. A 20-aa acid fragment of the human cellular prion protein, PrP(106-126), was reported to mimic the biological activity of the pathologic isoform of prion and activates mononuclear phagocytes. The cell surface receptor(s) mediating the activity of PrP(106-126) is unknown. In this study, we show that PrP(106-126) is chemotactic for human monocytes through the use of a G protein-coupled receptor formyl peptide receptor-like 1 (FPRL1), which has been reported to interact with a diverse array of exogenous or endogenous ligands. Upon stimulation by PrP(106-126), FPRL1 underwent a rapid internalization and, furthermore, PrP(106-126) enhanced monocyte production of proinflammatory cytokines, which was inhibited by pertussis toxin. Thus, FPRL1 may act as a "pattern recognition" receptor that interacts with multiple pathologic agents and may be involved in the proinflammatory process of prion diseases.  相似文献   

18.
The cytotoxicity of aged PrP(106-126) was examined using an immortalized prion protein (PrP) gene-deficient neuronal cell line. The N-terminal half of the hydrophobic region (HR) but not the octapeptide repeat (OR) of PrP was required for aged PrP(106-126) neurotoxicity, suggesting that neurotoxic signals of aged PrP(106-126) are mediated by this region.  相似文献   

19.
Prion diseases are progressive neurodegenerative diseases that are associated with the conversion of normal cellular prion protein (PrP(C)) to abnormal pathogenic prion protein (PrP(SC)) by conformational changes. Prion protein is a metal-binding protein that is suggested to be involved in metal homeostasis. We investigated here the effects of trace elements on the conformational changes and neurotoxicity of synthetic prion peptide (PrP106-126). PrP106-126 exhibited the formation of β-sheet structures and enhanced neurotoxicity during the aging process. The co-existence of Zn(2+) or Cu(2+) during aging inhibited β-sheet formation by PrP106-126 and attenuated its neurotoxicity on primary cultured rat hippocampal neurons. Although PrP106-126 formed amyloid-like fibrils as observed by atomic force microscopy, the height of the fibers was decreased in the presence of Zn(2+) or Cu(2+). Carnosine (β-alanyl histidine) significantly inhibited both the β-sheet formation and the neurotoxicity of PrP106-126. Our results suggested that Zn(2+) and Cu(2+) might be involved in the pathogenesis of prion diseases. It is also possible that carnosine might become a candidate for therapeutic treatments for prion diseases.  相似文献   

20.
A major hallmark of prion diseases is the cerebral amyloid accumulation of the pathogenic PrPSc, an abnormally misfolded, protease-resistant, and β-sheet rich protein. PrP106-126 is the key domain responsible for the conformational conversion and aggregation of PrP. It shares important physicochemical characteristics with PrPSc and presents similar neurotoxicity as PrPSc. By combination of fluorescence polarization, dye release assay and in situ time-lapse atomic force microscopy (AFM), we investigated the PrP106-126 amide interacting with the large unilamellar vesicles (LUVs) and the supported lipid bilayers (SLBs). The results suggest that the interactions involve a poration-mediated process: firstly, the peptide binding results in the formation of pores in the membranes, which penetrate only half of the membranes; subsequently, PrP106-126 amide undergoes the poration-mediated diffusion in the SLBs, represented by the formation and expansion of the flat high-rise domains (FHDs). The possible mechanisms of the interactions between PrP106-126 amide and lipid membranes are proposed based on our observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号