首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By means of histochemical technique the activities of delta53beta-, 17beta-, 20alpha-hydroxysteroid dehydrogenases and glucose-6-phosphate dehydrogenase, as well as alkaline and acid phosphatase were investigated in monolayer cultures of theca interna cells, isolated from preovulatory porcine ovarian follicles. It was found that theca interna cells exhibited high and constant activity of delta53beta-hydroxysteroid dehydrogenase and G6P-DH, whereas activities of both 17beta- and 20alpha-hydroxysteroid dehydrogenase were lower and showed some fluctuations during in vitro culture. Addition of LH to the medium brought about the increase of all studied dehydrogenases. FSH was less effective. Estradiol showed quite and inhibiting effect. All the hormones mentioned above caused the increase of alkaline and acid phosphatase activity in cultured porcine theca interna cells.  相似文献   

2.
3.
The steroid secreting activities of dispersed granulosa and theca interna cells from preovulatory follicles of prepubertal gilts 72 h after pregnant mare's serum gonadotropin treatment (750 IU) were compared. The cells were cultured for 24 h with or without steroid substrate (10(-8) to 10(-5) M progesterone, 17 alpha-hydroxyprogesterone, or androstenedione), FSH (100 ng/mL), LH (100 ng/mL), and cyanoketone (0.25 microM, an inhibitor of 3 beta-hydroxysteroid dehydrogenase). Granulosa cells cultured alone secreted mainly progesterone. Theca interna cells secreted mainly 17 alpha-hydroxyprogesterone and androstenedione, with secretion being markedly enhanced by LH. In the presence of cyanoketone, which inhibited endogenous progesterone production, theca interna but not granulosa cells were able to convert exogenous progesterone to 17 alpha-hydroxyprogesterone and androstenedione, and exogenous 17 alpha-hydroxyprogesterone to androstenedione and estradiol-17 beta in high yield. The secretion of the latter steroids from exogenous substrates was unaffected by LH. Theca interna cells secreted more estradiol-17 beta than did granulosa cells in the absence of aromatizable substrate, but estradiol-17 beta secretion by the latter was markedly increased after the addition of androstenedione. These apparent differences in steroid secreting activity between the cell types suggest that the enzymes responsible for conversion of C21 to C19 steroids, i.e., 17 alpha-hydroxylase and C17,20-lyase, reside principally in the theca interna cells. However, aromatase activity appears to be much higher in granulosa cells.  相似文献   

4.
We have investigated the role of theca cells in the control of apoptosis and proliferation of granulosa cells during bovine ovarian follicular development using a coculture system in which granulosa and theca cells were grown on opposite sides of a collagen membrane. A DNA fluorescence flow cytometry was used to determine the extent of apoptosis and proliferation in populations of granulosa cells. When granulosa cells were isolated from small follicles (3-5 mm), the percentage of apoptotic cells gradually increased by 1.8-fold during the 3 days of culture. This change was reduced (3.1-fold) by the presence of theca cells. When the cells were isolated from large follicles (15-18 mm), the percentage of apoptotic granulosa cells was gradually reduced (3.4-fold) during the 3 days of culture in single-cultured groups. The percentage of apoptosis on Day 1 was reduced (1.6-fold) by the presence of theca cells. However, such an effect was not detected on Days 2 and 3 of the culture. Theca cells did not affect the proliferation of granulosa cells obtained from either small or large follicles. The present study suggests that theca cells regulate the fate of granulosa cells throughout the follicular maturation process by secreting factors that suppress apoptosis.  相似文献   

5.
We have investigated the possible role of theca and granulosa cell interaction in the control of the hormone-producing activity and growth of granulosa and theca cells during bovine ovarian follicular development, using a coculture system in which granulosa and theca cells were grown on opposite sides of a collagen membrane. When follicular cells were isolated from small follicles (3-5 mm), theca cells reduced estradiol, progesterone, and inhibin production by granulosa cells to 14 +/- 5%, 64 +/- 6%, and 27 +/- 4%, respectively, of the production by granulosa cells cultured alone. On the other hand, when the cells were isolated from large follicles (15-18 mm), theca cells increased these levels to 253 +/- 34%, 156 +/- 24%, and 287 +/- 45%, respectively. Theca cells did not affect the growth of granulosa cells. Androstenedione production by theca cells was augmented by granulosa cells to 861 +/- 190% (in small follicles) and 1298 +/- 414% (in large follicles), respectively. The growth of theca cells was also augmented by granulosa cells (small follicle, 210 +/- 43%, and large follicle, 194 +/- 24%, respectively). These results indicate that theca cells secrete factor(s) inhibiting the differentiation of immature while promoting that of matured granulosa cells; they also suggest that granulosa cells secrete factor(s) promoting both the differentiation and growth of theca cells throughout the follicular maturation process.  相似文献   

6.
We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle.  相似文献   

7.
Summary Ovaries from normal adult dairy cows were obtained at all days of the estrous cycle. The largest Graafian follicle and corpus luteum were excised, prepared for light microscopy, examined morphologically, and quantitations of nuclear sizes were made using a planimetric technique.During the 3–4 days before ovulation, membrana granulosa cells ceased growing in size, and their nuclei decreased in size and frequently appeared pyknotic. Theca interna cells during this time formed two populations: large epithelioid cells with round nuclei, that enlarged significantly, and smaller fibroblast-type cells with spindle-shaped nuclei, that did not enlarge. During the 3–4 days after ovulation, the membrana granulosa cells of the ovulatory follicle and their nuclei enlarged significantly and contributed to the large luteal cell population of the corpus luteum. The spindle-shaped theca interna cells of the ovulatory follicle assumed rounded shapes and, together with some paraluteal and trabecular luteal cells (both, probably, of theca externa origin), contributed to the small luteal cell population of the corpus luteum. The epithelioid theca interna cells of the same follicle dispersed into the ovarian stroma. Eosinophils and mast cells were commonly observed among the theca cells during this time.The observations are interpreted in relation to periestrual ovarian hormone synthesis. It is suggested that the epithelioid theca interna cells during proestrus and estrus may secrete estrogens and that the large luteal cells during diestrus may secrete progesterone.This investigation was supported by a General Research Support Grant to the College of Veterinary Medicine, University of Minnesota, of the United States Public Health Service. Approved for publication as Scientific Journal Series Paper No. 6346, Minnesota Agricultural Experiment Station. The work reported is taken from the senior author's Ph. D. thesis.  相似文献   

8.
Fas antigen is a receptor that triggers apoptosis when bound by Fas ligand (FasL). A role for Fas antigen in follicular atresia was studied in follicles obtained during the first wave of follicular development during the bovine estrous cycle (estrus is Day 0). Granulosa and theca cells were isolated from healthy dominant follicles and the two largest atretic subordinate follicles on Day 5, atretic dominant follicles on Days 10-12, and preovulatory follicles on Day 1. Fas antigen mRNA levels were highest in granulosa cells from subordinate as compared to other follicles, and lowest in theca cells from healthy Day 5 dominant as compared to other follicles. FasL alone had no effect on viability of granulosa or theca cells but became cytotoxic in the presence of interferon-gamma (IFN). IFN has been shown to induce responsiveness to Fas antigen-mediated apoptosis in other cell types. In the presence of IFN, killing of granulosa cells by FasL was greater in subordinate compared to healthy dominant follicles on Day 5, did not differ between healthy and atretic dominant follicles, and was similar in theca among all follicles. Granulosa cells from preovulatory follicles, which had been exposed to the LH surge in vivo, were completely resistant to FasL-induced killing. In summary, Fas antigen expression, and responsiveness to Fas antigen-mediated apoptosis, vary during follicular development.  相似文献   

9.
Cultured rat ovarian granulosa cells undergo a dramatic morphological change when exposed to follicle-stimulating hormone (FSH). Exposure to FSH causes the flattened epithelioid granulosa cells to assume a nearly spherical shape while retaining cytoplasmic processes which contact the substrate as well as adjacent cells. This effect of FSH is preceded by a dose-dependent increase in intracellular cAMP, is potentiated by cyclic nucleotide phosphodiesterase inhibitors, and is mimicked by dibutyryl cAMP. Prostaglandins E1 or E2 and cholera enterotoxin also cause the cells to change shape. A subpopulation of the cells responds to luteinizing hormone. These morphological changes, which are blocked by 2,4-dinitrophenol, resemble those produced by treating cultures with cytochalasin B. Electron microscopy shows that the unstimulated, flattened cells contain bundles of microfilaments particularly in the cortical and basal regions. After FSH stimulation, microfilament bundles are not found in the rounded granulosa cell bodies but they are present in the thin cytoplasmic processes. These data suggest that the morphological change results from a cAMP-mediated, energy-dependent mechanism that may involve the alteration of microfilaments in these cells.  相似文献   

10.
11.
Dispersed granulosa and theca interna cells were recovered from follicles of prepubertal gilts at 36, 72 and 108 h after treatment with 750 i.u. PMSG, followed 72 h later with 500 i.u. hCG to stimulate follicular growth and ovulation. In the absence of aromatizable substrate, theca interna cells produced substantially more oestrogen than did granulosa cells. Oestrogen production was increased markedly in the presence of androstenedione and testosterone in granulosa cells but only to a limited extent in theca interna cells. The ability of both cellular compartments to produce oestrogen increased up to 72 h with androstenedione being the preferred substrate. Oestrogen production by the two cell types incubated together was greater than the sum produced when incubated alone. Theca interna cells were the principal source of androgen, predominantly androstenedione. Thecal androgen production increased with follicular development and was enhanced by addition of pregnenolone or by LH 36 and 72 h after PMSG treatment. The ability of granulosa and thecal cells to produce progesterone increased with follicular development and addition of pregnenolone. After exposure of developing follicles to hCG in vivo, both cell types lost their ability to produce oestrogen. Thecal cells continued to produce androgen and progesterone but no longer responded to LH in vitro. These studies indicate that several functional changes in the steroidogenic abilities of the granulosa and theca interna compartments occur during follicular maturation.  相似文献   

12.
The capability of granulosa and theca interna cells, from preovulatory follicles of the domestic hen, to metabolize steroid precursors was evaluated. Granulosa and theca interna cells were isolated from ovarian preovulatory follicles at three different developmental stages: F1, F3 and F5. Tritiated pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA), androstenedione (A4) and testosterone (T) were employed as precursors and their metabolic products were evaluated. The major metabolite of P5 by granulosa cells was P4, but we also observed low amounts of 5β-pregnandione. DHEA metabolism by granulosa cells yielded mainly A4, and minute quantities of 5β-androstan-3,17-dione (5β-dione) were detected. The only significant metabolite obtained in granulosa cells from A4 was 5β-dione, whereas T was only transformed into A4. On the other hand, P5 metabolism by theca interna cells yielded A4 as the main product, also P4, 17α-OHP4, 17α-OHP5, 5β-pregnandione, and DHEA, were found. When DHEA was the precursor A4 was produced in higher amounts than 5β-dione. A4 was mainly transformed into 5β-dione. In similar conditions, T was transformed into A4. These results show that granulosa cells have enzymatic activities of 3β-hydroxysteroid dehydrogenase/5-4 isomerase (3β-HSD from P5 and DHEA), 17β-hydroxysteroid dehydrogenase (17β-HSD from T) and 5β-reductase (from P5, DHEA and A4). Whereas theca interna cells have enzymatic activities of cytochrome P450c17 (from P5 and P4), 3β-HSD (from P5 and DHEA), 17β-HSD (from T) and 5β-reductase (from P4, DHEA and A4). These data support the concept that theca interna cells have the ability to synthesize androgens from progestins produced in granulosa cells. In addition, since theca interna cells did not show the capacity to aromatize androgens suggests that interaction between theca interna and theca externa cells occurs in vivo, thus confirming the three cell model for estrogen production. Furthermore, the fact that other metabolites were produced both in granulosa and theca interna cells, but in a different extent, suggests that complex mechanisms are participating in the regulation of steroid synthesis in avian ovary follicles.  相似文献   

13.
14.
This study was undertaken to investigate whether bovine granulosa and theca interna cells could be luteinized in vitro into luteal-like cells. Granulosa and theca cells were cultured for 9 days in the presence of forskolin (10 microM), insulin (2 micrograms/ml), insulin-like growth factor I (100 ng/ml), or a combination of these agents. During the first day of culture, granulosa and theca cells secreted estradiol and androstenedione, respectively; progesterone rose only after 3-5 days in culture and reached a maximum on the ninth day of culture. Cells incubated in the presence of forskolin plus insulin exhibited morphological and functional characteristics of luteal cells isolated from the corpus luteum. It was found that cell diameter, basal and stimulated progesterone secretion, and pattern of cell replication for both cell types were comparable to those of luteal cells. Numerous lipid droplets and intensified mitochondrial adrenodoxin staining also indicated active steroidogenesis in luteinized cells. After 9 days in culture, stimulants were withdrawn, and the culture proceeded in basal medium for an additional 5 days; elevated progesterone levels were maintained by luteinized granulosa cells (LGC), whereas in contrast a dramatic drop in progesterone production was observed in luteinized theca cells (LTC). On Day 9, cells were challenged for 3 h with LH (10 ng/ml), forskolin (10 microM), or cholera toxin (100 ng/ml), resulting in a 4-fold increase in progesterone secretion by LTC; the same treatments failed to stimulate progesterone in LGC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Ovarian granulosa cells grown on glass coverslips were split by a "sandwich" technique. Using this technique we describe a complex filamentous network in the cytoplasm of cultured granulosa cells that was composed of a branching and anastomosing lattice of filaments 20-40 nm in diameter. Since filament identification is impossible on the basis of size, split cells were decorated with S-1 fragments of rabbit skeletal muscle myosin. It was readily apparent that the major constituent of the filamentous lattice was actin. Actin was organized in large bundles in which individual filaments were longitudinally aligned. Actin was also observed organized in a loose network throughout the remainder of the cytoplasm. Actin appeared to be intimately associated with organelle and plasma membranes. Coated pits were also a site of actin-filament interaction. Filament polarity was generally away from the membrane with which filaments were associated.  相似文献   

16.
In Experiment 1, the influence of exogenous GH on steroid secretion by granulosa and theca interna cells recovered from small (1-3 mm), medium (4-6 mm) and large (8-12 mm) follicles was tested. In the second experiment, theca cells (Tc) and granulosa cells (Gc) obtained from large follicles were cultured separately or in two types, Tc/Gc co-culture, where both types of cells were mixed in one well or Gc and Tc were separated by cell culture membrane inserts. In the third experiment, the influence of GH on the morphology of Gc and Tc cells and activity of Delta(5),3beta-hydroxysteroid dehydrogenase (3beta-HSD) was studied. Cells were grown in the control medium (M199+5% of calf serum) or supplemented with 100 ng/ml GH. Testosterone (10(-7) M) was added as the aromatase substrate to granulosa cells cultures. The media were assayed after 48 h of culture for progesterone and oestradiol by RIA. GH added to the culture media had no effect on oestradiol and progesterone secretion by granulosa cells isolated from small and medium follicles while it stimulated both oestradiol and progesterone secretion by Gc isolated from large preovulatory follicles. A stimulatory effect on oestradiol secretion by Tc isolated from all size follicles was observed. GH did not stimulate progesterone secretion by Tc isolated from small follicles but stimulated progesterone secretion by Tc isolated from medium and large preovulatory follicles. Both co-culture systems exhibited synergistic effect on oestradiol secretion. The stimulatory effect on progesterone secretion under the influence of GH was observed in Gc cultured alone and Tc cultured alone. In contrast, the secretion of progesterone was attenuated in both co-culture systems and the addition of GH further augmented this attenuation. A statistically significant increase in oestradiol secretion was observed in all culture conditions. The addition of GH to the culture medium stimulated the activity of 3beta-HSD compared with the control culture from both types of cells. In conclusion, the present studies indicate that there are direct and follicular development stage dependent actions of GH on steroidogenesis of porcine follicular cells.  相似文献   

17.
18.
19.
The objective of the present study was to investigate the implication of protein kinase A (PKA), protein kinase C (PKC), and receptor protein tyrosine kinase (R-PTK) pathways in the regulation of estradiol (E2) and progesterone (P4) production by bovine granulosa cells. Cells were harvested from bovine follicles (8-15 mm diameter) and cultured without serum for an initial 3 days (37 degrees C; 5% CO(2) in air; D1-D3). On the fourth day of culture (D4), E2 and P4 production were stimulated with FSH (1-6 ng/ml) or forskolin (FSK) in the presence or absence of intracellular effectors of PKA, PKC, and R-PTK. Culture medium was collected and replaced each day. Stimulation of granulosa cell adenylate cyclase activity with FSK (0.06-3.75 microM) mimicked FSH, inducing a quadratic increase (P < 0.001) of E2 production and a continuous elevation of P4 (P < 0.01). Inhibition of R-PTK activity with genistein (25-50 microM) increased the sensitivity of cells to FSH as demonstrated by a leftward shift in the dose response curve (P < 0.001). Treatment with transforming growth factor-alpha (TGFalpha; 0. 1 ng/ml) abolished the FSH-induced E2 production (P < 0.001) and this effect was not reversed (P < 0.001) by FSK or by genistein. Furthermore, the inhibitory effect of TGFalpha on FSH-induced E2 production was reproduced by phorbol 12-myristate 13-acetate (PMA; 1. 25-2.5 microM), a PKC activator (P < 0.001). Interestingly, genistein inhibited P4 production (P < 0.05). From these results, we conclude that E2 production by bovine granulosa cells is mediated by intracellular factors and can be stimulated downstream from the FSH receptor. The results also suggest that stimulation of R-PTK and/or PKC activities, as probably occurs with TGFalpha, negatively affects the PKA pathway, thus decreasing E2 production. Furthermore, inhibition of R-PTK leads to an increase production of E2 and may limit luteinization of bovine granulosa cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号