首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently a chloroplast holo-acyl carrier protein (holoACP) synthase activity was identified which attached the phosphopantetheine prosthetic group to acyl carrier protein, producing holoACP (Fernandez and Lamppa (1990) Plant Cell 2, 195-206). Here we show that the mature form of ACP (apoACP), after entry into the chloroplast and removal of the transit peptide, is a substrate for modification by the holoACP synthase. Modification occurs optimally at 37 degrees C and is inhibited by 5 mM 3',5'-ADP and 2 mM EDTA. An ACP construct (matACP) lacking the transit peptide was also converted to the holoACP form in an organelle-free assay, independent of precursor cleavage. The matACP construct was used to monitor the chromatographic separation of the holoACP synthase from the transit peptidase. Superose 12 gel filtration analysis indicates that the holoACP synthase has an apparent Mr of approximately 50,000. Using fractions enriched for the holoACP synthase it was demonstrated that the precursor of ACP is also modified in the presence of CoA and subsequently can be proteolytically processed directly to holoACP. Kinetic analysis, however, indicates that removal of the transit peptide is a much faster reaction than phosphopantetheine addition, suggesting that apoACP is the primary substrate for the chloroplast holoACP synthase in vivo.  相似文献   

2.
Acyl carrier protein (ACP) is an essential cofactor of fatty acid synthase. In plants, ACP is synthesized in the cytosol as a larger precursor protein and then is imported into the plastid where it is processed to a smaller mature form. The active form of ACP uses a covalently linked 4[prime]-phosphopantetheine prosthetic group derived from coenzyme A to covalently bind the acyl intermediates during fatty acid synthesis. The prosthetic group is added to ACP by holoACP synthase. This enzyme activity is associated with both the plastidial subcellular fraction and the soluble, or cytoplasmic, fraction. To gain further insight into potential in vivo pathways for the synthesis and maturation of ACP, in this study we examined whether precursor holoACP can be imported by isolated spinach (Spinacia oleracea) chloroplasts. Precursor holoACP containing a [35S]phosphopantetheine prosthetic group was prepared, and the radiolabel was used to demonstrate import of the phosphopantethenylated protein into isolated chloroplasts. In addition, timed chloroplast import assays indicated that in vitro import of the phosphopantethenylated protein is at least as efficient as import of the precursor apoprotein. Evidence was also obtained for a low level turnover of the prosthetic group among endogenous plastidial ACPs when coenzyme A was supplied exogenously.  相似文献   

3.
L M Yang  G Lamppa 《Plant physiology》1996,112(4):1641-1647
A 30-kD coenzyme A (CoA)-binding protein was isolated from spinach (Spinacea oleracea) chloroplast soluble extracts using affinity chromatography under conditions in which 95% of the total protein was excluded. The 30-kD protein contains an eight-amino-acid sequence, DVRLYYGA, that is identical to a region in a 36-kD protein of unknown function that is encoded by a kiwifruit (Actinidia deliciosa) cDNA. Southern blotting also detected a spinach gene that is related to the kiwifruit cDNA. The kiwifruit 36-kD protein that was synthesized in Escherichia coli was imported into chloroplasts and cleaved to a 30-kD form; it was processed to the same size in an organelle-free assay. Furthermore, the kiwifruit protein specifically bound to CoA. The kiwifruit protein contains a single cysteine within a domain that is related to the peroxisomal beta-ketoacyl-CoA thiolases, which catalyze the CoA-dependent degradative step of fatty acid beta-oxidation. Within 50 amino acids surrounding the cysteine, considered to be part of the thiolase active site, the kiwifruit protein shows approximately 26% sequence identity with the mango, cucumber, and rat peroxisomal thiolases. N-terminal alignment with these enzymes, relative to the cysteine, indicates that the 36-kD protein is cleaved after serine-58 during import, agreeing with the estimated size (approximately 6 kD) of a transit peptide. The 30-kD protein is also related to the E. coli and mitochondrial thiolases, as well as to the acetoacetyl-CoA thiolases of prokaryotes. Features distinguish it from members of the thiolase family, suggesting that it carries out a related but novel function. The protein is more distantly related to chloroplast beta-ketoacyl-acyl carrier protein synthase III, the initial condensing enzyme of fatty acid synthetase that utilizes acetyl-CoA.  相似文献   

4.
《The Journal of cell biology》1987,105(6):2641-2648
A processing activity has been identified in higher plant chloroplasts that cleaves the precursor of the light-harvesting chlorophyll a/b- binding protein (LHCP). A wheat LHCP gene previously characterized (Lamppa, G.K., G. Morelli, and N.-H. Chua, 1985. Mol. Cell Biol. 5:1370- 1378) was used to synthesize RNA and subsequently the labeled precursor polypeptide in vitro. Incubation of the LHCP precursors with a soluble extract from lysed chloroplasts, after removal of the thylakoids and membrane vesicles, resulted in the release of a single 25-kD peptide. In contrast, when the LHCP precursors were used in an import reaction with intact pea or wheat chloroplasts, two forms (25 and 26 kD) of mature LHCP were found. The peptide released by the processing activity in the organelle-free assay comigrated with the lower molecular mass form of mature LHCP produced during import. Properties of the processing activity suggest that it is an endopeptidase. Chloroplasts from both pea and wheat, two divergent higher plants, contain the processing enzyme, suggesting its physiological importance in LHCP assembly into the thylakoids. We discuss the implications of LHCP precursor processing by a soluble enzyme that may be in the stromal compartment.  相似文献   

5.
C-terminally truncated precursors of wheat light-harvesting chlorophyll a/b binding protein (LHCP) were synthesized to investigate the origin of the two forms (about 25 kD and 26 kD) of the mature protein observed upon in vitro import into the chloroplast. Precursors p delta 13 and p delta 27, lacking 13 and 27 amino acids, respectively, were successfully imported, and both gave rise to two smaller forms proportional to the size of their deletions. These results demonstrate that there are two N-terminal sites that are cleaved during import of the LHCP precursor, undoubtedly contributing to the heterogeneity of LHCP found in vivo. Significantly, p delta 27 yielded only 50% of mature LHCP when compared with wild type. Although the products of p delta 27 import were localized to the thylakoids, in contrast to p delta 13 they were not correctly inserted into the membranes, indicating that residues essential for this step are missing. p delta 27 is distinguished from p delta 13 by lacking the carboxy end of a domain highly conserved between LHCP of photosystems II and I. Other specific precursor mutants with larger C-terminal deletions were not efficiently transported into the organelle in time course experiments, nor did they insert directly into the thylakoids using chloroplast lysates, in an assay independent of translocation across the envelope. In addition, the mutant p delta 18n, lacking the first 18 amino acids of mature LHCP, was only found bound to the chloroplast envelope. However, both p delta 18n and the mature protein, i.e., LHCP, synthesized in vitro without its 34-amino acid transit peptide inserted into the thylakoids in chloroplast lysates. The overall conformation of the mutant precursor polypeptides was probed using the chloroplast soluble processing enzyme in an organelle-free reaction optimized for the LHCP precursor and the more general protease trypsin. A tightly folded, protease-resistant conformation was not apparent to explain the loss of efficient import.  相似文献   

6.
We have investigated whether the precursors for the light-harvesting chlorophyll a/b binding proteins (LHCP) of photosystems II and I (PSII and PSI) are cleavable substrates in an organelle-free reaction, and have compared the products with those obtained during in vitro import into chloroplasts. Representatives from the tomato (Lycopersicon esculentum) LHCP family were analyzed. The precursor for LHCP type I of PSII (pLHCPII-1), encoded by the tomato gene Cab3C, was cleaved at only one site in the organelle-free assay, but two sites were recognized during import, analogous to our earlier results with a wheat precursor for LHCPII-1. The relative abundance of the two peptides produced was investigated during import of pLHCPII-1 into chloroplasts isolated from plants greened for 2 or 24 hours. In contrast to pLHCPII-1, the precursors for LHCP type II and III of PSI were cleaved in both assays, giving rise to a single peptide. The precursor for LHCP type I of PSI, encoded by gene Cab6A, yielded two peptides of 23.5 and 21.5 kilodaltons during import, whereas in the organelle-free assay only the 23.5 kilodalton peptide was found. N-terminal sequence analysis of this radiolabeled peptide has tentatively identified the site cleaved in the organelle-free assay between met40 and ser41 of the precursor.  相似文献   

7.
D H Keating  Y Zhang    J E Cronan  Jr 《Journal of bacteriology》1996,178(9):2662-2667
Acyl carrier protein (ACP) is modified on serine 36 by the covalent posttranslational attachment of 4'-phosphopantetheine from coenzyme A (CoA), and this modification is required for lipid biosynthesis. Jackowski and Rock (J. Biol. Chem 258:15186-15191, 1983) reported that upon depletion of the CoA pool by starvation for a CoA precursor, no accumulation of the unmodified form of ACP (apo-ACP) was detected. We report that this lack of apo-ACP accumulation results from decreased translation of the acpP mRNAs because of the limitation of the synthesis of glutamate and other amino acids made directly from tricarboxylic acid cycle intermediates.  相似文献   

8.
We have shown previously that during in vitro import into chloroplasts, the precursor of the major light-harvesting chlorphyll a/b-binding protein (LHCP) generated from a wheat gene gives rise to two mature forms (25 and approximately 26 kDa) which are inserted into the thylakoids. However, during incubation of the LHCP precursor with a chloroplast-soluble extract in an organelle-free processing reaction, the NH2 terminus is cleaved, yielding only a 25-kDa peptide. In the present study, mutations at the transit peptide-mature protein junction were introduced in the LHCP precursor to investigate the relationship between the two peptides and the determinants of proteolytic processing. Mutant p delta 3 lacks 3 amino acids including Met34 at the primary cleavage site thought to give rise to the 26-kDa peptide. It is still processed during import and in the organelle-free reaction yielding in both assays only a 25-kDa peptide. Mutant p + 4 has 4 amino acids inserted immediately after Met34 and a proline that disrupts the alpha-helix predicted by the Garnier-Osguthorpe-Robson method (Garnier, J., Osguthorpe, D. J., and Robson, B. (1978) J. Mol. Biol. 120, 97-120) to extend through this region. Although p + 4 is imported, it is inefficiently processed; both a 25- and 26-kDa peptide are found, but at least 60% of the imported precursor remains uncleaved. Less than 5% is processed in the organelle-free assay. Replacement of the predicted alpha-helix in the mutant p + 4 alpha restores processing upon import into the chloroplast, but this mutant, which also has a 4-amino acid insert, yields only a 26-kDa peptide. p + 4 alpha is not processed in the organelle-free reaction. These results provide evidence that the two forms of LHCP obtained during import are the result of independent processing at two cleavage sites: the first site at Met34, and a second approximately 10 amino acids downstream within what has been designated the NH2 terminus of the mature protein. Whereas p delta 3 has the first site removed but retains a functional second site, in p + 4 alpha only the first site, or one very near it, is accessible to the processing enzyme during import. The conditions of the organelle-free reaction are specific for processing at only the secondary site. We discuss the implications of these findings in terms of the heterogeneity of LHCP in vivo.  相似文献   

9.
Site-directed mutagenesis was used to change the phosphopantetheine attachment site (Ser38) of spinach acyl carrier protein I (ACP-I) from a serine to a threonine or cysteine residue. 1. Although the native ACP-I is fully phosphopantethenylated when expressed in Escherichia coli, the TH-ACP-I and CY-ACP-I mutants were found to be completely devoid of the phosphopantetheine group. Therefore, the E. coli holoACP synthase requires serine for in vivo phosphopantetheine addition to spinach ACP-I. 2. Spinach holoACP synthase was completely inactive in vitro with either the TH-ACP-I or CY-ACP-I mutants. In addition, TH-ACP-I and CY-ACP-I were strong inhibitors of spinach holoACP synthase. 3. The mutant ACPs were weak or ineffective as inhibitors of spinach fatty acid synthesis and spinach oleoyl-ACP hydrolase. 4. Compared to holoACP-I, the mutant apoACP-I analogs had: (a) altered mobility in SDS and native gel electrophoresis, (b) altered binding to anti-(spinach ACP-I) antibodies and (c) altered isoelectric points. The combined physical, immunological and enzyme inhibition data indicate that attachment of the phosphopantheine prosthetic group alters ACP conformation.  相似文献   

10.
A sensitive fluorescent assay was developed to measure the extent of phosphopantetheinylation of polyketide synthase (PKS) acyl carrier protein (ACP) domains in polyketide production strains. The in vitro assay measures PKS fluorescence after transfer of fluorescently labeled phosphopantetheine from coenzyme A to PKS ACP domains in crude protein extracts. The assay was used to determine the extent of phosphopantetheinylation of ACP domains of the erythromycin precursor polyketide synthase, 6-deoxyerythronolide B synthase (DEBS), expressed in a heterologous Escherichia coli polyketide production strain. The data showed that greater than 99.9% of DEBS is phosphopantetheinylated. The assay was also used to interrogate the extent of phosphopantetheinylation of the lovastatin nonaketide synthase (LNKS) heterologously expressed in Saccharomyces cerevisiae. The data showed that LNKS was efficiently phosphopantetheinylated in S. cerevisiae and that lack of production of the lovastatin precursor polyketide was not due to insufficient phosphopantetheinylation of the expressed synthase.  相似文献   

11.
We demonstrate that the precursor of the major light-harvesting chlorophyll a/b binding protein (LHCP of Photosystem II), encoded by a Type I gene, contains distinct determinants for processing at two sites during in vitro import into the chloroplast. Using precursors from both pea and wheat, it is shown that primary site processing, and release of a approximately 26-kD peptide, depends on an amino-proximal basic residue. Substitution of an arginine at position -4 resulted in an 80% reduction in processing, with the concomitant accumulation of a high molecular weight intermediate. Cleavage occurred normally when arginine was changed to lysine. The hypothesis that a basic residue is a general requirement for transit peptide removal was tested. We find that the precursors for the small subunit of Rubisco and Rubisco activase do not require a basic residue within seven amino acids of the cleavage site for maturation. In the wheat LHCP precursor, determinants for efficient cleavage at a secondary site were identified carboxy to the primary site, beyond what is traditionally called the transit peptide, within the sequence ala-lys-ala-lys (residues 38-41). Introduction of this sequence into the pea precursor, which has the residues thr-thr-lys-lys in the corresponding position, converted it to a substrate with an efficiently recognized secondary site. Our results indicate that two different forms of LHCP can be produced with distinct NH2-termini by selective cleavage of a single precursor polypeptide.  相似文献   

12.
We determined the primary structure of a 9.6-kDa subunit of the respiratory chain NADH:ubiquinone reductase (complex I) from Neurospora crassa mitochondria and found a close relationship between this subunit and the bacterial or chloroplast acyl-carrier protein. The degree of sequence identity amounts to 80% in a region of 19 residues around the serine to which the phosphopantetheine is bound. The N-terminal presequence of the subunit has the characteristic features of a mitochondrial import sequence. We cultivated the auxotroph pan-2 mutant of N. crassa in the presence of [14C]pantothenate and recovered all radioactivity incorporated into mitochondrial protein in the 9.6-kDa subunit of complex I. We cultivated N. crassa in the presence of chloramphenicol to accumulate the nuclear-encoded peripheral arm of complex I. This pre-assembled arm also contains the 9.6-kDa subunit. These results demonstrate that an acyl-carrier protein with pantothenate as prosthetic group is a constituent part of complex I in N. crassa.  相似文献   

13.
A stromal processing peptidase (SPP) cleaves a broad range of precursors targeted to the chloroplast, yielding proteins for numerous biosynthetic pathways in different compartments. SPP contains a signature zinc-binding motif, His-X-X-Glu-His, that places it in a metallopeptidase family which includes the mitochondrial processing peptidase. Here, we have investigated the mechanism of cleavage by SPP, a late, yet key event in the import pathway. Recombinant SPP removed the transit peptide from a variety of precursors in a single endoproteolytic step. Whereas the mature protein was immediately released, the transit peptide remained bound to SPP. SPP converted the transit peptide to a subfragment form that it no longer recognized. We conclude that SPP contains a specific binding site for the transit peptide and additional proteolysis by SPP triggers its release. A stable interaction between SPP and an intact transit peptide was directly demonstrated using a newly developed binding assay. Unlike recombinant SPP, a chloroplast extract rapidly degraded both the transit peptide and subfragment. A new degradative activity, distinguishable from SPP, was identified that is ATP- and metal-dependent. Our results indicate a regulated sequence of events as SPP functions during precursor import, and demonstrate a previously unrecognized ATP-requirement for transit peptide turnover.  相似文献   

14.
Pantothenate is the precursor of the essential cofactor coenzyme A (CoA). Pantothenate kinase (CoaA) catalyzes the first and regulatory step in the CoA biosynthetic pathway. The pantothenate analogs N-pentylpantothenamide and N-heptylpantothenamide possess antibiotic activity against Escherichia coli. Both compounds are substrates for E. coli CoaA and competitively inhibit the phosphorylation of pantothenate. The phosphorylated pantothenamides are further converted to CoA analogs, which were previously predicted to act as inhibitors of CoA-dependent enzymes. Here we show that the mechanism for the toxicity of the pantothenamides is due to the inhibition of fatty acid biosynthesis through the formation and accumulation of the inactive acyl carrier protein (ACP), which was easily observed as a faster migrating protein using conformationally sensitive gel electrophoresis. E. coli treated with the pantothenamides lost the ability to incorporate [1-(14)C]acetate to its membrane lipids, indicative of the inhibition of fatty acid synthesis. Cellular CoA was maintained at the level sufficient for bacterial protein synthesis. Electrospray ionization time-of-flight mass spectrometry confirmed that the inactive ACP was the product of the transfer of the inactive phosphopantothenamide moiety of the CoA analog to apo-ACP, forming the ACP analog that lacks the sulfhydryl group for the attachment of acyl chains for fatty acid synthesis. Inactive ACP accumulated in pantothenamide-treated cells because of the active hydrolysis of regular ACP and the slow turnover of the inactive prosthetic group. Thus, the pantothenamides are pro-antibiotics that inhibit fatty acid synthesis and bacterial growth because of the covalent modification of ACP.  相似文献   

15.
May T  Soll J 《The Plant cell》2000,12(1):53-64
Transit sequences of chloroplast-destined precursor proteins are phosphorylated on a serine or threonine residue. The amino acid motif around the phosphorylation site is related to the phosphopeptide binding motif for 14-3-3 proteins. Plant 14-3-3 proteins interact specifically with wheat germ lysate-synthesized chloroplast precursor proteins and require an intact phosphorylation motif within the transit sequence. Chloroplast precursor proteins do not interact with 14-3-3 when synthesized in the heterologous reticulocyte lysate. In contrast, a precursor protein destined for plant mitochondria was found to be associated with 14-3-3 proteins present in the reticulocyte lysate but not with 14-3-3 from wheat germ lysate. This indicates an unrecognized selectivity of 14-3-3 proteins for precursors from mitochondria and plastids in plants in comparison to fungi and animals. The heterooligomeric complex has an apparent size of 200 kD. In addition to the precursor protein, it contains 14-3-3 (probably as a dimer) and a heat shock protein Hsp70 isoform. Dissociation of the precursor complex requires ATP. Protein import experiments of precursor from the oligomeric complex into intact pea chloroplasts reveal three- to fourfold higher translocation rates compared with the free precursor, which is not complexed. We conclude that the 14-3-3-Hsp70-precursor protein complex is a bona fide intermediate in the in vivo protein import pathway in plants.  相似文献   

16.
The acyl carrier protein (ACP), an essential protein cofactor for fatty acid synthesis, has been isolated from two cyanobacteria: the filamentous, heterocystous, Anabaena variabilis (ATCC 29211) and the unicellular Synechocystis 6803 (ATCC 27184). Both ACPs have been purified to homogeneity utilizing a three-column procedure. Synechocystis 6803 ACP was purified 1800-fold with 67% yield, while A. variabilis ACP was purified 1040-fold with 50% yield. Yields of 13.0 micrograms ACP/g Synechocystis 6803 and 9.0 micrograms ACP/g A. variabilis were achieved. Amino acid analysis indicated that these ACPs were highly charged acidic proteins similar to other known ACPs. Sequence analysis revealed that both cyanobacterial ACPs were highly conserved with both spinach and Escherichia coli ACP at the phosphopantetheine prosthetic group region. Examining the probability of alpha-helix and beta-turn regions in various ACPs, showed that cyanobacterial ACPs were more closely related to E. coli ACP than spinach ACP I. Immunoblot analysis and a competitive binding assay for ACP illustrated that both ACPs bound poorly to spinach ACP I antibody. SDS/PAGE and native PAGE of Synechocystis 6803 ACP and A. variabilis ACP showed that cyanobacteria ACPs co-migrated with E. coli ACP and had relative molecular masses of 18,100 and 17,900 respectively. Both native and urea gel analysis of acyl-ACP products from fatty acid synthase reactions demonstrated that bacterial ACPs and plant ACP gave essentially the same metabolic products when assayed using either bacterial or plant fatty acid synthase. A. variabilis and Synechocystis 6803 ACP could be acylated using E. coli acyl ACP synthetase.  相似文献   

17.
The acyl carrier protein domain of the chicken liver fatty acid synthase has been isolated after tryptic treatment of the synthase. The isolated domain functions as an acceptor of acetyl and malonyl moieties in the synthase-catalyzed transfer of these groups from their coenzyme A esters and therefore indicates that the acyl carrier protein domain exists in the complex as a discrete entity. The amino acid sequence of the acyl carrier protein was derived from analyses of peptide fragments produced by cyanogen bromide cleavage and trypsin and Staphylococcus aureus V8 protease digestions of the molecule. The isolated acyl carrier protein domain consists of 89 amino acid residues and has a calculated molecular weight of 10,127. The protein contains the phosphopantetheine group attached to the serine residue at position 38. The isolated acyl carrier protein peptide shows some sequence homology with the acyl carrier protein of Escherichia coli, particularly in the vicinity of the site of phosphopantetheine attachment, and shows extensive sequence homology with the acyl carrier protein from the uropygial gland of goose.  相似文献   

18.
Ferredoxin is a chloroplast stroma protein which is cytosolically synthesized as a precursor with an amino-terminal extension called the transit sequence that is needed for the post-translational uptake by the chloroplast. To characterize the secondary and tertiary structure elements, the full precursor, the holo- and apo- (without iron-sulfur cluster) forms of the mature protein, and the chemically synthesized transit peptide were obtained and analyzed separately. Circular dichroism, tryptophan fluorescence quenching, and protease accessibility experiments indicate that the precursor has a low content of defined secondary structure and resembles unfolded proteins; these properties are due to both the mature part and the transit sequence. This result provides an explanation for the lack of cytosolic factor requirement of this protein for import. In an import competition assay, the isolated transit peptide had an affinity for the chloroplasts comparable to the full precursor. Interestingly and of possible importance to the import process, the transit peptide has conformational flexibility as it adopts alternative secondary structures in different environments.  相似文献   

19.
Summary Plant ferredoxin is a nuclear-encoded chloroplast protein that is synthesized in the cytoplasm as a transit peptide-containing precursor molecule. To identify functional regions in the pre-ferredoxin transit peptide we constructed mutants with deletions of increasing length from the processing site toward the amino-terminus of the precursor. The mutant proteins were tested in an in vitro chloroplast binding and import assay. Deletion of the amino acids adjacent to the processing site completely abolishes binding and import. This region contains a sequence motif that is conserved among different precursor species. By constructing and testing mutants in the amino-terminal region of the mature part of the precursor protein, we found that this region of the molecule can greatly influence the import reaction.  相似文献   

20.
The transfer of the phosphopantetheine chain from coenzyme A (CoA) to the acyl carrier protein (ACP), a key protein in both fatty acid and polyketide synthesis, is catalyzed by ACP synthase (AcpS). Streptomyces coelicolor AcpS is a doubly promiscuous enzyme capable of activation of ACPs from both fatty acid and polyketide synthesis and catalyzes the transfer of modified CoA substrates. Five crystal structures have been determined, including those of ligand-free AcpS, complexes with CoA and acetyl-CoA, and two of the active site mutants, His110Ala and Asp111Ala. All five structures are trimeric and provide further insight into the mechanism of catalysis, revealing the first detailed structure of a group I active site with the essential magnesium in place. Modeling of ACP binding supported by mutational analysis suggests an explanation for the promiscuity in terms of both ACP partner and modified CoA substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号