首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of synthesis, turnover, and half-lives were determined for brain microsomal ether phospholipids in the awake adult unanesthetized rat. A multicompartmental kinetic model of phospholipid metabolism, based on known pathways of synthesis, was applied to data generated by a 5 min intravenous infusion of [1,1-(3)H]hexadecanol. At 2 h post-infusion, 29%, 33%, and 31% of the total labeled brain phospholipid was found in the 1-O-alkyl-2-acyl-sn-glycero-3-phosphate, ethanolamine, and choline ether phospholipid fractions, respectively. Autoradiography and membrane fractionation showed that 3% of the net incorporated radiotracer was in myelin at 2 h, compared to 97% in gray matter microsomal and synaptosomal fractions. Based on evidence that ether phospholipid synthesis occurs in the microsomal membrane fraction, we calculated the synthesis rates of plasmanylcholine, plasmanylethanolamine, plasmenylethanolamine, and plasmenylcholine equal to 1.2, 9.3, 27.6, and 21.5 nmol. g(-1). min(-1), respectively. Therefore, 8% of the total brain ether phospholipids have half-lives of about 36.5, 26.7, 23.1, and 15.1 min, respectively. Furthermore, we clearly demonstrate that there are at least two pools of ether phospholipids in the adult rat brain. One is the static myelin pool with a slow rate of tracer incorporation and the other is a dynamic pool found in gray matter.The short half-lives of microsomal ether phospholipids and the rapid transfer to synaptosomes are consistent with evidence of the marked involvement of these lipids in brain signal transduction and synaptic function.  相似文献   

2.
Contreras  M. A.  Chang  M. C. J.  Kirkby  D.  Bell  J. M.  Rapoport  S. I. 《Neurochemical research》1999,24(7):833-841
Our laboratory has reported that pentobarbital-induced anesthesia reduced the incorporation of intravenously injected radiolabeled palmitic acid into brain phospholipids. To determine if this decrease reflected a pentobarbital-induced decrease in palmitate turnover in phospholipids, we applied our method and model to study net flux and turnover of palmitate in brain phospholipids (1). Awake, light and deep pentobarbital (25–70 mg/kg, iv) anesthetized rats were infused with [9,10-3H]palmitate over a 5 min period. Brain electrical activity was monitored by electroencephalography. An isoelectric electroencephalogram characterized deep pentobarbital anesthesia. Net incorporation rates (J FA,i ) and turnover rates (F i) of palmitate were calculated. J FA,i for palmitate incorporated into phospholipids was dramatically reduced by pentobarbital treatment in a dose-dependent manner, by 70% and 90% respectively for lightly and deeply anesthetized animals, compared with awake controls. Turnover rates for palmitate in total phospholipid and individual phospholipid classes were decreased by nearly 70% and 90% for lightly and deeply anesthetized animals, respectively. Thus, pentobarbital decreases, in a dose-dependent manner, the turnover of palmitate in brain phospholipids. This suggests that palmitate turnover is closely coupled to brain functional activity.  相似文献   

3.
Dunalliella salina (Teodoresco) is a unicellular, wall-less, halotolerant green alga. Previous work has shown that levels of inositol phospholipiils in whole cells of D. salina fluctuate in response to hyper- and hypo-osmotic shock. In this paper, we report the effects of changes in the light environment on levels of phospholipids, including inositol phospholipids, in D. scilina. Utilizing both short-term and long-term labeling of phospholipids with 32PO4, we were able to compare both immediate and long-term changes in lipid metabolism during changes in the light environment. Relative to the other phospholipids. phosphotidic acid and the inositol phospholipids phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were rapidly labeled, even in the dark, suggesting that the metabolism of these compounds is more active than that of the bulk cellular phospholipids. There was little change in inositol phospholipid metabolism when cells were illuminated following a 1 h dark adaptation period, Furthermore, the inositol phospholipid signal transduction pathway did not respond to severe photoinhibition treatment. Apparently this plasma-membrane-based signal transduction pathway, which responds to changes in the external environment, is relatively insensitive to major changes in chloroplast metabolism.  相似文献   

4.
Secretion of periplasmic alkaline phosphatase (PhoA) encoded by the gene constituent of plasmids and the peculiar properties of cell envelope biogenesis in Escherichia coli strains with controlled synthesis of individual membrane phospholipids have been studied. Alkaline phosphatase secretion across the cytoplasmic membrane declines, while secretion into the culture medium intensifies under changed metabolism. The composition of anionic membrane phospholipids changes due to inactivation of the pgsA gene or regulation of its expression by environmental factor, as well as in the absence of the pssA gene which is responsible for the synthesis of the precursor for zwitter-ionic phospholipid — phosphatidylethanolamine. This correlates with intensified secretion of exopolysaccharides and lower content of lipopolysaccharide and lipoprotein which are responsible for barrier properties of the outer membrane. The results suggest a possible coupling of protein secretion with biogenesis of cell envelope components at a level of phospholipid metabolism.  相似文献   

5.
Abstract: The effect of hydrocephalus on cerebral energy metabolites and on intermediates of membrane phospholipid metabolism has been studied in H-Tx rats with inherited infantile hydrocephalus. Hydrocephalic rats and rats with shunts placed at 4–5 days or at 10 days after birth were subjected to magnetic resonance imaging in vivo before 21 days of age to determine the dimensions of the ventricles and cortex. At 21 days, the brains from the three groups of rats, together with age-matched control littermates, were frozen in situ, and chloroform/methanol extracts of cerebral cortex were prepared for high-resolution 31P-NMR spectroscopy. Hydrocephalus resulted in modest decreases in most metabolites quantified. Levels of phosphocreatine, ATP, and diphosphodiesters plus NAD were significantly reduced by 23–32%, and inorganic phosphate content was reduced but not significantly. Levels of the membrane phospholipid intermediates phosphorylethanolamine, glycerophosphorylethanolamine, and glycerophosphorylcholine were also significantly reduced by 30–33%, indicating changes in membrane metabolism. These general decreases are consistent with a loss of cell contents, possibly due to changes in dendrite structure in hydrocephalus. Rats shunt-treated at 4–5 days were similar to control rats for all energy metabolites, but those treated later at 10 days had reduced phosphocreatine and ATP levels. Shunt-treated rats also had reductions in levels of membrane phospholipids, some of which occurred in sham-operated rats. It is concluded that hydrocephalus leads to reductions in levels of energy metabolites and in levels of membrane phospholipids and that the changes in energy metabolites can be reversed by early, but not by later, shunt treatment.  相似文献   

6.
Previous studies have demonstrated elevated brain levels of phosphomonoesters in early stages of Alzheimer's disease and elevations of phosphodiesters later in the disease. In addition, preliminary quantitative analyses of the phospholipids of Alzheimer's brain reveals either decreases in some phospholipids or elevations followed by decreases in others. This study quantitated the activities of selected enzymes involved in phospholipid and choline metabolism and demonstrated elevated glycerol-3-phosphorylcholine phosphodiesterase and decreased choline kinase activities in Alzheimer's disease brain. The former could provide an enzymatic mechanism for the increased phosphorylcholine found in Alzheimer's disease brain.  相似文献   

7.
Using a method and model developed in our laboratory to quantitatively study brain phospholipid metabolism, in vivo rates of incorporation and turnover of docosahexaenoic acid in brain phospholipids were measured in awake rats. The results suggest that docosahexaenoate incorporation and turnover in brain phospholipids are more rapid than previously assumed and that this rapid turnover dilutes tracer specific activity in brain docoshexaenoyl-CoA pool due to release and recycling of unlabeled fatty acid from phospholipid metabolism. Fractional turnover rates for docosahexaenoate within phosphatidylinositol, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserine were 17.7, 3.1, 1.2, and 0.2 %.h–1, respectively. Chronic lithium treatment, at a brain level considered to be therapeutic in humans (0.6 mol.g–1), had no effect on turnover of docosahexaenoic acid in individual brain phospholipids. Consistent with previous studies from our laboratory that chronic lithium decreased the turnover of arachidonic acid within brain phospholipids by up to 80% and attenuated brain phospholipase A2 activity, the lack of effect of lithium on docosahexaenoate recycling and turnover suggests that a target for lithium's action is an arachidonic acid-selective phospholipase A2.  相似文献   

8.
F. Dabbeni-Sala  A. Pitotti  A. Bruni 《BBA》1981,637(3):400-407
(1) The effect of phospholipids on a preparation containing the ATPase complex and the adenine nucleotide carrier is studied in the presence of ligands known to affect the conformation of these components of the mitochondrial inner membrane. (2) When ATPase activity is abolished by phospholipid depletion, the reactivation induced by phosphatidylcholine is prevented by the simultaneous addition of ATP. ADP partially reproduces the ATP effect. AMP, GTP, UTP and Pi are ineffective. (3) The influence of ATP is associated with reduced phospholipid binding to the membrane fragments and is reversible. The ATP effect on reconstitution is not manifest when phosphatidylcholine is added together with negatively charged phospholipids. (4) Carboxyatractyloside does not modify the phospholipid-ATPase complex interaction but bongkrekic acid is as effective as ATP. In the presence of ADP, the influence of bongkrekic acid is considerably increased. (5) It is concluded that the binding of ATP to the adenine nucleotide carrier enables the complex to select between the charged and uncharged phospholipids. As a result of the carrier conformational change, the ATPase complex is induced to prefer a negatively charged phospholipid environment.  相似文献   

9.
Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.  相似文献   

10.
Biosynthesis of N-acylethanolamine phospholipids by dog brain preparations   总被引:1,自引:1,他引:0  
Abstract: Dog brain homogenates and subcellular preparations incubated in the presence of Ca2+ produced a new phospholipid that was isolated and identified by its infrared spectrum and by chemical degradation as a mixture of 1, 2-diacyl, alkenylacyl, and alkylacyl sn -glycero-3-phospho ( N -acyl)ethanolamines, 50, 45, and 5%, respectively. The N -acyl groups consisted almost exclusively of 16:0, 18:0, and 18:1 fatty acids. Formation of N -acylethanolamine phospholipids from endogenous substrates was linear for about 90 min at approximately 4.5 nmol/h/mg protein and exhibited a pH optimum of 10. Biosynthetic activity was associated with particulate fractions, primarily microsomes, synaptosomes, and mitochondria, but not with myelin. In each case, small amounts (∼0.5 nmol/h/mg protein) of long-chain N -acylethanolamines were also produced. Incubation of dog brain microsomes with 1,2-di[1'-14C]palmitoyl glycero-phosphocholine yielded N -acylethanolamine phospholipids labeled at both N -acyl (55%) and O -acyl (45%) moieties. It appears that dog brain organelles may contain a phosphatidylethanolamine N -acyl transferase (transacylase) analogous to that recently demonstrated in the myocardial tissue.  相似文献   

11.
Wistar rats were injected intraperitoneally with 10 mg/kg of protriptyline according to one of the following schedules: a single dose or daily for 4 days (short-term), or daily for 2 or 13 weeks (long-term). Total lipid, total phospholipid, and individual phospholipid contents in the brain were determined. Further, the incorporation of 32P into individual phospholipids in vivo and the fatty acid composition of phosphatidylethanolamine in the brains of rats treated with protriptyline for 13 weeks were studied. Three alternative phases of changes of total and individual phospholipid contents in the brain during 13 weeks of experimentation were distinguished. An increase of phospholipid contents after 4 days, a decrease after 2 weeks, and a further increase after 13 weeks of protriptyline administration were found. However, phosphatidylinositol and phosphatidic acid levels after 13 weeks of protriptyline administration were diminished. The decrease of specific radioactivity of phosphatidylethanolamine, phosphatidylcholine, and phosphatidylserine and the increase of phosphatidylinositol, phosphatidic acid, and sphingomyelin in rats treated with the drug for a longer period of time were noted. No greater differences in fatty acid composition of phosphatidylethanolamine in the brains of the same group of rats were observed as compared to control. These results indicate that during long-term treatment with protriptyline the contents of lipids and phospholipids in rat brain are altered. The modification of the biological function of phospholipids in brain cell membranes is suggested.  相似文献   

12.
The content of phospholipids in chromatin, nuclear matrix, and nuclear membrane from wheat (Triticum aestivum L.) embryos was studied. Subfractions of intact nuclei from dry embryos were shown to differ in the content and composition of particular phospholipids. Embryo germination resulted in the redistribution of phospholipid between nuclear subfractions. A functional role of structural changes in the nuclear membrane due to this phospholipid redistribution is discussed. It is supposed that these rearrangements change nuclear membrane permeability and its surface charge.  相似文献   

13.
Alterations in brain phospholipid metabolism were observed after chronic ethanol administration for 16 days to developing rats. Animals were injected intraperitoneally with 32Pi 16 h prior to killing. Overall uptake of 32Pi by brain did not differ between the control and ethanol-treated groups, which were killed 2 h and 24 h after the last ethanol feeding. Except for an increase in the labeling of myelin after ethanol treatment, the amount of radioactivity recovered in the synaptosomal-mitochondrial and plasma membrane fractions of control and ethanol-treated groups was not different. Relative to the radioactivity of phosphatidylcholines, which indicated no change, there were increases (20-44%) in labeling of ethanolamine plasmalogens, phosphatidic acids, and phosphatidylinositols in cortical synaptosomes from the 2-h ethanol-treated group. In the plasma membrane fractions, however, increases (9-14%) in labeling of phosphatidylserines and phosphatidylinositols were observed in both 2- and 24-h ethanol-treated groups. In both membrane fractions, there was an obvious increase (44-86%) in labeling of polyphosphoinositides at 24 h after withdrawal from ethanol. Results thus indicate an adaptive increase in the biosynthesis of ethanolamine plasmalogen and brain acidic phospholipids due to chronic ethanol administration. Furthermore, the increase in labeling of polyphosphoinositides in the 24-h withdrawal group may reflect the hypoactivity associated with ethanol withdrawal.  相似文献   

14.
Hexachlorobenzene (HCB) alters phospholipid and heme metabolisms in the liver and Harderian gland. The effects of HCB on phospholipid metabolism, in an organ considered to be non-responsive to its porphyrinogenic effects, remain to be studied. Therefore, as the brain is an organ with this feature, this paper analyzes the effects of HCB on brain phospholipid composition in order to investigate if there is any relationship between HCB-induced porphyrin metabolism disruption and phospholipid alterations. For this purpose, a time-course study of HCB effects on brain phospholipids was performed in two strains of rats differing in their susceptibility to acquire hepatic porphyria: Chbb THOM (low); and Wistar (high). This paper shows for the first time that rat brain phospholipids are affected by HCB exposure. Comparative studies show that HCB-induced disturbances in brain phospholipid patterns are time and strain-dependent. Thus, whereas major phospholipids, phosphatidylcholine and phosphatidylethanolamine were more altered in Wistar rats, minor phospholipids, phosphatidylinositol and phosphatidylserine were more affected in Chbb THOM rats. HCB intoxication led to a sphingomyelin/phosphatidylcholine molar ratio lower than the normal, in both strains. As was expected, brain porphyrin content was not altered by HCB intoxication in either strain. It can be concluded that HCB is able to alter brain phospholipid metabolism in a strain-dependent fashion, and in the absence of alterations in brain heme metabolism. In addition, HCB-induced disturbances in brain phospholipids were not related to the degree of hepatic porphyria achieved by the rats.  相似文献   

15.
To establish a balance between the ATP produced in catabolism and the ATP consumed in net biosynthesis of cellular components the energy metabolism of Saccharomyces cerevisiae utilizing glucose in the absence of a nitrogen source (resting cells) was studied. The following results were obtained. (i) Cell number and biomass increased 2- and 2.5-fold, respectively, during the first 8 h of ammonium starvation. After this period, both values remained constant. (ii) The rate of sugar consumption and ATP production decreased with the duration of starvation to about 20% of the original in 24 h. (iii) About 60% of the sugar consumed was fermented to ethanol and about 10% assimilated as cellular material. Of the assimilated sugar, as much as 80% was accumulated as carbohydrate. (iv) Only 15% of the total ATP produced in catabolism seems to be consumed in net biosynthesis and maintenance of intracellular pH. The fate of the remaining 85% is unknown.  相似文献   

16.
A glycerol-requiring auxotroph of Bacillus subtilis showed no net synthesis of phospholipid when deprived of glycerol. Although there was no net synthesis of phospholipid, we found that: (i) fatty acids and (32)P were slowly incorporated into phospholipid; (ii) in pulse-chase experiments, both (32)P and (14)C in the glycerol portion of the phospholipids were lost from phosphatidlyglycerol (PG) and lysylphosphatidylglycerol and accumulated in cardiolipin (CL); (iii) the proportions of the phospholipids in the membrane changed with a loss of PG and an accumulation of CL. The addition of glycerol to the glycerol-deprived cells resulted in a rapid incorporation of glycerol and restoration to the predeprivation metabolism and PG to CL ratio.  相似文献   

17.
18.
仿野生鳖卵内容物冻干粉收率为 30 .6 1% ,它的粗蛋白质及磷脂含量分别为 5 0 .0 1%和 12 .74 %。TLC分析结果表明仿野生鳖卵含有 5种磷脂成份 ,而鹌鹑卵及猪脑仅含有 3种磷脂  相似文献   

19.
The inositol phospholipids phosphatidylinositol, phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol 4,5-bisphosphate (PIP2) comprise 14.8, 1.2, and 0.3 mol %, respectively, of Dunaliella salina phospholipids. In isolated plasma membrane fractions, PIP and PIP2 are highly concentrated, together comprising 9.5 mol % of plasmalemma phospholipids. The metabolism of these inositol phospholipids and phosphatidic acid (PA) is very rapid under normal growth conditions. Within 5 min after introduction of 32Pi into the growth medium, over 75% of lipid-bound label was found in these quantitatively minor phospholipids. Within 2 min after a sudden hypoosmotic shock, the levels of PIP2 and PIP dropped to 65 and 79%, respectively, of controls. Within the same time frame, PA rose to 141% of control values. These data suggest that a rapid breakdown of the polyphosphoinositides may mediate the profound morphological and physiological changes which allow this organism to survive drastic hypoosmotic stress. In contrast to hypoosmotic shock, hyperosmotic shock induced a rise in PIP2 levels to 131% of control values, whereas the level of PA dropped to 56% of controls after 4 min. These two different types of osmotic stress affect inositol phospholipid metabolism in a fundamentally opposite manner, with only hypoosmotic shock inducing a net decrease in polyphosphoinositides.  相似文献   

20.
About 20 and 43% of the total membrane phospholipids are hydrolized in fresh rat erythrocytes by treatment with phospholipase C (Bacillus cereus), or both sphingomyelinase and phospholipase C, respectively, without causing cell lysis. Treatment of ATP-depleted cells with phospholipase C alone results in 50% hydrolysis and extensive lysis. Depletion of ATP causes a marked increase in the aggregation of intramembranous particles accompanied by a similar increase in the smooth area between the particle clusters as revealed by the freeze-etch technique. Such changes are not induced by extensive phospholipid hydrolysis in absence of cell lysis in fresh cells.Based on these and additional data, it is suggested that the membrane phospholipid organization can be divided into 3 types: phospholipids exposed to phospholipase C; phospholipids protected against phospholipase C by presence of sphingomyelin; phospholipids which can be exposed following alteration of the proteinlipid interactions. Such alterations which might be induced by a variety of means, including ATP depletion, might result in clustering of intramembranous particles and increase of the free lipid bilayer phase of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号