首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The perchloric acid extraction method for measuring concentrations of intracellular intermediary metabolites was adapted and optimized forCandida tropicalis. Cells were harvested by filtration and rapidly frozen in liquid nitrogen in order to image anin vivo situation. Intracellular metabolites were determined with NAD/NADH linked enzymatic assays and detected spectrofluorimetrically, which allowed determinations in the mM range. The assays allow measurements of 50–60 samples at the same time. Six different metabolites (fructose 1,6-diphosphate, pyruvate, phosphoenolpyruvate, citrate, malate and fumarate) could be determined in the same sample. The method was applied to study the relation of product formation and the intracellular intermediary metabolite concentrations inCandida tropicalis at varying degrees of oxygen limitation in xylose fermenting cells. Maximum metabolite concentrations as well as maximum ratio of Krebs cycle to glycolysis metabolites were found at 5 mM/h OTR, at which point maximum ethanol production was observed.  相似文献   

2.
NaCl stress inhibits maltose fermentation by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
While fermentation of 20 g glucose l–1 by Saccharomyces cerevisiae was not impaired by high NaCl concentrations, fermentation of 20 g maltose l–1 was significantly decreased by 0.7 M NaCl, and completely inhibited with 1.4 M NaCl. No glycerol was produced in response to the salt stress when yeast cells were fermenting maltose. Active maltose transport, and not intracellular hydrolysis, was the metabolic step severely impaired by the NaCl stress.  相似文献   

3.
The intracellular pH value of Saccharomyces cerevisiae NCYC 1681 was measured using radiolabelled [14C]-propionic acid. Errors, due to the binding of radioactive material to trub, were eliminated using silicone oil centrifugation. Replication of analyses reduced the variations associated with low cell counts during fermentation. Whilst fermenting brewer's wort, yeast intracellular pH values were maintained within a narrow range (5.9–6.4). Cellular ATP concentrations were highly conserved in spite of the fact that the cells were exposed to an increasing concentration of ethanol as the fermentation progressed.  相似文献   

4.
Hong  Ming  Mou  Han  Liu  Xiaoyun  Huang  Mingzhi  Chu  Ju 《Bioprocess and biosystems engineering》2017,40(9):1337-1348

Metabolomics analysis is extremely essential to explore the metabolism characteristics of Saccharopolyspora erythraea. The lack of suitable methods for the determination of intracellular metabolites, however, hinders the application of metabolomics analysis for S. erythraea. Acyl-CoAs are important precursors of erythromycin; phosphorylated sugars are intermediate metabolites in EMP pathway or PPP pathway; organic acids are intermediate metabolites in TCA cycle. Reliable determination methods for intracellular acyl-CoAs, phosphorylated sugars, and organic acids of S. erythraea were designed and validated in this study. Using the optimized determination methods, the pool sizes of intracellular metabolites during an erythromycin fermentation process were precisely quantified by isotope dilution mass spectroscopy method. The quantification results showed that the specific erythromycin production rate was positively correlated with the pool sizes of propionyl-CoA as well as many other intracellular metabolites. The experiment under the condition without propanol, which is a precursor of propionyl-CoA and an important substrate in industrial erythromycin production process, also corroborated the correlation between specific erythromycin production rate and intracellular propionyl-CoA pool size. As far as we know, this is the first paper to conduct the metabolomics analysis of S. erythraea, which makes the metabolomics analysis of S. erythraea in the industrial erythromycin production process possible.

  相似文献   

5.
The changes in phosphate metabolism induced in yeast by transition from fermentation to respiration have been studied. Orthophosphate added to respiring or fermenting yeast suspensions as Na2HP32O4 is rapidly resorbed and incorporated into adenosine triphosphate (ATP) and other acid-labile fractions. During fermentation, the specific activity of the orthophosphate is higher than that of ATP. This is thought to be mainly due to a heterogeneity in the intracellular orthophosphate. In respiring yeast, pyrophosphate is formed. The specific activity of this pyrophosphate is very high when the cells are maintained from the start of the experiment under aerobic conditions. When respiration follows a prior period of fermentation lasting 30–60 min., an accumulation of lowly labeled pyrophosphate occurs. Concurrently an acidinsoluble phosphate fraction is mobilized. As indicated by labeling relations, this fraction may be an intermediary in the pathway between orthophosphate and pyrophosphate. The possible role of dinucleotides in primary aerobic phosphorylation is reviewed and it is shown that diphosphopyridine nucleotide (DPN) undergoes a temporary resynthesis in yeast during the first 5–6 hr. of respiration. The question whether this phenomenon may be regarded as a secondary consequence of an enzymatic adaptation which involves pyrophosphate accumulation is discussed.  相似文献   

6.
Analysis of yeasts derived from natural fermentation in a Tokaj winery   总被引:7,自引:0,他引:7  
The diversity of yeast flora was investigated in a spontaneously fermenting sweet white wine in a Tokaj winery. The non-Saccharomyces yeasts dominating the first phase of fermentation were soon replaced by a heterogeneous Saccharomycespopulation, which then became dominated by Saccharomyces bayanus. Three Saccharomyces sensu stricto strains isolated from various phases of fermentation were tested for genetic stability, optimum growth temperature, tolerance to sulphur dioxide, copper and ethanol as well as for the ability to produce hydrogen sulphide and various secondary metabolites known to affect the organoleptic properties of wines. The analysis of the single-spore cultures derived from spores of dissected asci revealed high stability of electrophoretic karyotypes and various degrees of heterozygosity for mating-types, the fermentation of galactose and the production of metabolic by-products. The production levels of the by-products did not segregate in a 2:2 fashion, suggesting that the synthesis of these compounds is under polygenic control.  相似文献   

7.
Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.  相似文献   

8.
The intracellular metabolic profile characterization of Saccharomyces cerevisiae throughout industrial ethanol fermentation was investigated using gas chromatography coupled to time-of-flight mass spectrometry. A total of 143 and 128 intracellular metabolites in S. cerevisiae were detected and quantified in continuous and batch fermentations, respectively. The two fermentation processes were both clearly distinguished into three main phases by principal components analysis. Furthermore, the levels of some metabolites involved in central carbon metabolism varied significantly throughout both processes. Glycerol and phosphoric acid were principally responsible for discriminating seed, main and final phases of continuous fermentation, while lactic acid and glycerol contributed mostly to telling different phases of batch fermentation. In addition, the levels of some amino acids such as glycine varied significantly during both processes. These findings provide new insights into the metabolomic characteristics during industrial ethanol fermentation processes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The yeast Saccharomyces cerevisiae has a fundamental role in fermenting grape juice to wine. During alcoholic fermentation its catabolic activity converts sugars (which in grape juice are a near equal ratio of glucose and fructose) and other grape compounds into ethanol, carbon dioxide and sensorily important metabolites. However, S. cerevisiae typically utilises glucose and fructose with different efficiency: glucose is preferred and is consumed at a higher rate than fructose. This results in an increasing difference between the concentrations of glucose and fructose during fermentation. In this study 20 commercially available strains were investigated to determine their relative abilities to utilise glucose and fructose. Parameters measured included fermentation duration and the kinetics of utilisation of fructose when supplied as sole carbon source or in an equimolar mix with glucose. The data were then analysed using mathematical calculations in an effort to identify fermentation attributes which were indicative of overall fructose utilisation and fermentation performance. Fermentation durations ranged from 74.6 to over 150 h, with clear differences in the degree to which glucose utilisation was preferential. Given this variability we sought to gain a more holistic indication of strain performance that was independent of fermentation rate and therefore utilized the area under the curve (AUC) of fermentation of individual or combined sugars. In this way it was possible to rank the 20 strains for their ability to consume fructose relative to glucose. Moreover, it was shown that fermentations performed in media containing fructose as sole carbon source did not predict the fructophilicity of strains in wine-like conditions (equimolar mixture of glucose and fructose). This work provides important information for programs which seek to generate strains that are faster or more reliable fermenters.  相似文献   

10.
Towards industrial pentose-fermenting yeast strains   总被引:15,自引:0,他引:15  
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.  相似文献   

11.
The disparity of secondary metabolites in Penicillium chrysogenum between two scales of penicillin G fermentation (50 L as pilot process and 150,000 L as industrial one) was investigated by ion-pair reversed-phase liquid chromatography tandemed with hybrid quadrupole time-of-flight mass spectrometry. In industrial process, the pools of intracellular L-α-aminoadipyl-L-cysteinyl-D-valine (LLD-ACV) and isopenicillin N (IPN) were remarkably less than that in the pilot one, which indicated that the productivity of penicillin G might be higher in the large scale of fermentation. This conclusion was supported by the higher intracellular penicillin G concentration as well as its higher yield per unit biomass in industrial cultivation. The different changing tendencies of IPN, 6-aminopenicillanic acid and 6-oxopiperide-2-carboxylic acid between two processes also suggested the same conclusion. The higher content of intracellular LLD-ACV in pilot process lead to a similarly higher concentration of bis-δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine, which had an inhibitory effect on ACV synthetase and also subdued the activity of IPN synthetase. The interconversion of secondary metabolites and the influence they put on enzymes would intensify the discrepancy between two fermentations more largely. These findings provided new insight into the changes and regulation of secondary metabolites in P. chrysogenum under different fermentation sizes.  相似文献   

12.
Summary Pichia stipitis CBS 6054 ferments D-Xylose to ethanol in a medium containing corn steep liquor as the only source of nitrogen, amino acids, vitamins and other nutrients. The ethanol yield and fermentation rate compare favorably to those obtained with media containing more expensive sources of nitrogen, vitamins and amino acids. Corn steep liquor is a good source of nutrients that can support growth and fermentation activity of this xylose fermenting yeast.  相似文献   

13.
Escherichia coli AFP111, a pflB, ldhA, ptsG triple mutant of E. coli W1485, can be recovered for additional succinate production in fresh medium after two-stage fermentation (an aerobic growth stage followed by an anaerobic production stage). However, the specific productivity is lower than that of two-stage fermentation. In this study, three strategies were compared for reusing the cells. It was found when cells were aerobically cultivated at the end of two-stage fermentation without supplementing any carbon source, metabolites (mainly succinate and acetate) could be consumed. As a result, enzyme activities involved in the reductive arm of tricarboxylic acid cycle and the glyoxylate shunt were enhanced, yielding a succinate specific productivity above 1 2 5  \textmg  \textgDCW - 1  \texth - 1 1 2 5\;{\text{mg}}\;{\text{g}}_{\rm DCW}^{ - 1} \,{\text{h}}^{ - 1} and a mass yield above 0.90 g g−1 in the subsequent anaerobic fermentation. In addition, the intracellular NADH of cells subjected to aerobic cultivation with metabolites increased by more than 3.6 times and the ratio of NADH to NAD+ increased from 0.4 to 1.3, which were both favorable for driving the TCA branch to succinate.  相似文献   

14.
Saralov  A. I.  Mol'kov  D. V.  Bannikova  O. M.  Solomennyi  A. P.  Chikin  S. M. 《Microbiology》2001,70(6):633-639
The formation of polyhydroxyalkanoates granules in anaerobically grown Escherichia coliM-17 cells was found to be preceded by the intracellular accumulation of carbonic acids (predominantly, acetic acid), amounting to 9% of the cytosol. The intracellular concentration of acidic metabolites increased after the lyophilization of the bacterial biomass and decreased after its long-term storage (3.5–13.5 years). The decrease in the concentration of acidic metabolites is likely due to the dehydration of dimeric carbonic acids in the viscoelastic cytosol of resting bacterial cells. The hydrophobic obligately aerobic cells of Acinetobacter calcoaceticusIEGM 549 are able to utilize a wide range of growth substrates (from acetate and citrate to hydrophobic hydrocarbons), which is considerably wider than the range of the growth substrates of E. coli(predominantly, carbohydrates). The minimal essential and optimal concentrations of orthophosphates in the growth medium of A. calcoaceticuswere found to be tens of times lower than in the case of E. coli.The intracellular content of orthophosphates in A. calcoaceticuscells reached 35–77% of the total phosphorus content (Ptotal), providing for the intense synthesis of polyphosphates. The Ptotalof the A. calcoaceticuscells grown in media with different proportions between the concentrations of acetate and phosphorus varied from 0.7 to 3.3%, averaging 2%. This value of Ptotalis about two times higher than that observed for fermenting E. colicells. Lowering the cultivation temperature of A. calcoaceticusfrom 37–32 to 4°C augmented the accumulation of orthophosphates in the cytoplasm, presumably owing to a decreased requirement of growth processes for orthophosphate. In this case, if the concentration of phosphates in the cultivation medium was low, they were completely depleted.  相似文献   

15.
This article reviews current co-culture systems for fermenting mixtures of glucose and xylose to ethanol. Thirty-five co-culture systems that ferment either synthetic glucose and xylose mixture or various biomass hydrolysates are examined. Strain combinations, fermentation modes and conditions, and fermentation performance for these co-culture systems are compared and discussed. It is noted that the combination of Pichia stipitis with Saccharomyces cerevisiae or its respiratory-deficient mutant is most commonly used. One of the best results for fermentation of glucose and xylose mixture is achieved by using co-culture of immobilized Zymomonas mobilis and free cells of P. stipitis, giving volumetric ethanol production of 1.277 g/l/h and ethanol yield of 0.49–0.50 g/g. The review discloses that, as a strategy for efficient conversion of glucose and xylose, co-culture fermentation for ethanol production from lignocellulosic biomass can increase ethanol yield and production rate, shorten fermentation time, and reduce process costs, and it is a promising technology although immature.  相似文献   

16.
Clostridium carboxidivorans ferments CO, CO2, and H2 via the Wood-Ljungdahl pathway. CO, CO2, and H2 are unique substrates, unlike other carbon sources like glucose, so it is necessary to analyze intracellular metabolite profiles for gas fermentation by C. carboxidivorans for metabolic engineering. Moreover, it is necessary to optimize the metabolite extraction solvent specifically for C. carboxidivorans fermenting syngas. In comparison with glucose media, the gas media allowed significant abundance changes of 38 and 34 metabolites in the exponential and stationary phases, respectively. Especially, C. carboxidivorans cultivated in the gas media showed changes of fatty acid metabolism and higher levels of intracellular fatty acid synthesis possibly due to cofactor imbalance and slow metabolism. Meanwhile, the evaluation of extraction solvents revealed the mixture of water-isopropanol-methanol (2:2:5, v/v/v) to be the best extraction solvent, which showed a higher extraction capability and reproducibility than pure methanol, the conventional extraction solvent. This is the first metabolomic study to demonstrate the unique intracellular metabolite profiles of the gas fermentation compared to glucose fermentation, and to evaluate water-isopropanol-methanol as the optimal metabolite extraction solvent for C. carboxidivorans on gas fermentation.  相似文献   

17.
Respiration capacity and consequences in Lactococcus lactis   总被引:3,自引:0,他引:3  
We recently reported that the well-studied fermenting bacterium Lactococcus lactis could grow via a respirative metabolism in the presence of oxygen when a heme source is present. Respiration induces profound changes in L. lactis metabolism, and improvement of oxygen tolerance and long-term survival. Compared to usual fermentation conditions, biomass is approximately doubled by the end of growth, acid production is reduced, and large amounts of normally minor end products accumulate. Lactococci grown via respiration survive markedly better after long-term storage than fermenting cells. We suggest that growth and survival of lactococci are optimal under respiration-permissive conditions, and not under fermentation conditions as previously supposed.Our results reveal the uniqueness of the L. lactis respiration model. The well-studied aerobic bacteria express multiple terminal cytochrome oxidases, which assure respiration all throughout growth; they also synthesize their own heme. In contrast, the L. lactis cydABgenes encode a single cytochrome oxidase (bd), and heme must be provided. Furthermore, cydAB genes mediate respiration only late in growth. Thus, lactococci exit the lag phase via fermentation even if heme is present, and start respiration in late exponential phase. Our results suggest that the spectacularly improved survival is in part due to reduced intracellular oxidation during respiration. We predict that lactococcal relatives like the Enterococci, and some Lactobacilli, which have reported respiration potential, will display improved survival under respiration-permissive conditions.  相似文献   

18.
A mass flux balance-based stoichiometric model of Bacillus licheniformis for the serine alkaline protease (SAP) fermentation process has been established. The model considers 147 reaction fluxes, and there are 105 metabolites that are assumed to be in pseudo-steady state. Metabolic flux distributions were obtained from the solution of the model based on the minimum SAP accumulation rate assumption in B. licheniformis in combination with the off-line extracellular analyses of the metabolites that were the sole carbon source citrate, dry cell, organic acids, amino acids, and SAP; variations in the intracellular fluxes were demonstrated for the three periods of the batch bioprocess. The flux distribution maps showed that the cells completed the TCA cycle and utilized the gluconeogenesis pathway, pentose phosphate pathway, and anaplerotic reactions throughout the fermentation; however, the glycolysis pathway was inactive in all the periods of the fermentation. The flux values toward SAP increased throughout the bioprocess and slightly decreased in the last period; however, SAP selectivity values were almost the same in Periods II and III and higher than Period I. The diversions in the pathways and certain metabolic reactions depending on the bioprocess periods are also presented and the results indicated that the intracellular amino acid fluxes played an important role in the SAP fermentation process.  相似文献   

19.
Summary A method based on density gradient centrifugation for the accurate and rapid determination of concentrations of intracellular metabolites was developed. The new method was applied to determination of intracellular levels of lactate during lactate fermentation and of intracellular levels of glutamate during glutamate fermentation. The method gave satisfactory results, showing good reproducibility and reliability with a probability of 95%. This method will allow basic information to be obtained about the transport of metabolites from within cells to the culture broth and about dynamic changes in metabolism.  相似文献   

20.
Microbial metabolomics has been seriously limited by our inability to perform a reliable separation of intra- and extracellular metabolites with efficient quenching of cell metabolism. Microbial cells are sensitive to most (if not all) quenching agents developed to date, resulting in leakage of intracellular metabolites to the extracellular medium during quenching. Therefore, as yet we are unable to obtain an accurate concentration of intracellular metabolites from microbial cell cultures. However, knowledge of the in vivo concentrations of intermediary metabolites is of fundamental importance for the characterization of microbial metabolism so as to integrate meaningful metabolomics data with other levels of functional genomics analysis. In this article, we report a novel and robust quenching method for microbial cell cultures based on cold glycerol-saline solution as the quenching agent that prevents significant leakage of intracellular metabolites and, therefore, permits more accurate measurement of intracellular metabolite concentrations in microbial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号