首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Locke  H Leung 《Tissue & cell》1985,17(4):589-603
Previous work on the last (fifth) larval stadium of Calpodes showed two phases of elaboration of epidermal nucleoli correlated with RNA synthesis, the first after ecdysis at the beginning of the intermolt and the second near the end of the stadium prior to molting. Both phases followed periods of elevated hemolymph ecdysteroid. The demonstration of four hemolymph ecdysteroid peaks and an improvement in the bismuth-staining procedure for nucleoli has prompted further study of nucleolar changes in relation to hemolymph edcysteroids. We have found that three of the four ecdysteroid peaks (I, II and IV) are followed by nucleolar changes. The exception is the commitment peak (III) for which there is no corresponding nucleolar change. The three nucleolar cycles are similar in their essential features. An intercycle nucleolus consists of one or a few irregularly shaped particles that become more densely stained and condense into a knot at the beginning of each cycle. The knot unfolds into a necklace which beomes beaded as it elongates to a length of about 23 mum. Cells have one or two, rarely more, necklaces presumably depending on their ploidy. At the end of the cycle the necklaces contract, becoming coarser and fragmented before they condense to the intercycle condition of central irregular cores. Whereas nucleolar necklaces are a general response to hemolymph ecdysteroids, mitoses are locally determined and are imposed over other nuclear activities at any time in the third nucleolar cycle.  相似文献   

2.
A Tuck  M Locke 《Tissue & cell》1985,17(3):349-357
The changing pattern of nucleolar structure in the epidermal cells of Manduca sexta has been correlated with hormonal changes taking place during the fifth stadium. The epidermal nucleoli show three cycles of development, the first and third of which occur at the beginnings of the intermoult and moult phases respectively and are related to larval and pupal syntheses. The second phase occurs in the middle of the stadium but prior to the onset of wandering and commitment to pupation. A phase of mitosis separates the second and third cycles. The three cycles thus correspond in time to those found in Calpodes. The three cycles of nucleolar change are superimposed over nuclear changes relating to the degree of ploidy. Each phase begins with an expansion of the condensed nucleoli to form lobed rings and then necklaces. In the first phase (day 0-3), the rings and necklaces progress to form threaded networks. Both rings and networks have many ribosomal precursor granules that are lacking in condensed nucleoli. The rings and networks are therefore presumed to be more active in rRNA synthesis than the condensed state. The first and third phases of nucleolar change occur after elevated titres of haemolymph ecdysteroid. Post-thoracic ligation of animals at ecdysis blocks nucleolar changes as well as the appearance of polyploid nuclei. Nucleolar changes may be a primary response of the epidermis to stimulation by ecdysone.  相似文献   

3.
A N Stroud  R Nathan  S Harami 《In vitro》1975,11(2):61-68
Early chromatin condensation in interphase cells (G1) of human peripheral blood lymphocytes has been induced without virus or cell fusion by exposure to allogeneic or xenogeneic mitotic cells. The event, although similar in some ways to the phenomenon described as "premature chromosome condensation," "chromosome pulverization," and "prophasing," differs in that it does not require the presence of viruses and cell fusion before mitosis proceeds in the G1 cell. Early chromatin condensation in interphase cells induced by mitotic cells only, consists of chromatids in the early or late G1 phase of the cell cycle that are not pulverized or fragmented at mitosis. Some of the chromosomes are twice as long as the metaphase chromosomes and exhibit natural bands. Almost twice as many of these bands are produced as by trypsin treatment of metaphase chromosomes. The nuclear membrane is intact and nucleoli are present, to which some chromosomes are attached. The DNA content of the precocious chromosomes in G1 is half the amount of the metaphase complement.  相似文献   

4.
The localization of the specific protein Surf-6 from nucleoli of eukaryotic cells in mitosis and its sensitivity to the treatment of cells with RNase A and DNase I in situ were studied. It was shown that, in interphase nucleoli of 3T3 mouse cells, Surf-6 is probably associated with RNA and practically is not associated with DNA. In mitosis, Surf-6 appears in forming nucleoli after the known RNA-binding proteins fibrillarin and B23/nucleofozmin, which are involved in the early and late stages of the assembly of ribosomal particles, respectively. These observations and the regularities of migration of early and late proteins of ribosome assembly to nucleoli in the telophase of mitosis led us to the presumption that Surf-6 is involved in the terminal stages of the assembly of ribosomal particles in murine cells. An immunoblot analysis of the Surf-6 content in synchronized 3T3 cells showed for the first time that Surf-6 is present at all stages of the cell cycle but its content markedly decreases when cells enter the G0 period. Conversely, the activation of cells for proliferation is accompanied by an increase in the Surf-6 content. These observations allow one to regard Surf-6 as a marker of the cell proliferative state and suggest its implication in the regulation of the cell cycle.  相似文献   

5.
We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.  相似文献   

6.
The localization of the specific protein Surf-6 from nucleoli of eukaryotic cells in mitosis and its sensitivity to the treatment of cells with RNase A and DNase I in situ were studied. It was shown that, in interphase nucleoli of 3T3 mouse cells, Surf-6 is probably associated with RNA and practically is not associated with DNA. In mitosis, Surf-6 appears in forming nucleoli after the known RNA-binding proteins fibrillarin and B23/nucleofozmin, which are involved in the early and late stages of the assembly of ribosomal particles, respectively. These observations and the regularities of migration of early and late proteins of ribosome assembly to nucleoli in the telophase of mitosis led us to the presumption that Surf-6 is involved in the terminal stages of the assembly of ribosomal particles in murine cells. An immunoblot analysis of the Surf-6 content in synchronized 3T3 cells showed for the first time that Surf-6 is present at all stages of the cell cycle but its content markedly decreases when cells enter the G0 period. Conversely, the activation of cells for proliferation is accompanied by an increase in the Surf-6 content. These observations allow one to regard Surf-6 as a marker of the cell proliferative state and suggest its implication in the regulation of the cell cycle. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 6; see also http://www.maik.ru.  相似文献   

7.
Mitotic chromosome condensation is normally dependent on the previous completion of replication. Caffeine spectacularly deranges cell cycle controls after DNA polymerase inhibition or DNA damage; it induces the condensation, in cells that have not completed replication, of fragmented nuclear structures, analogous to the S-phase prematurely condensed chromosomes seen when replicating cells are fused with mitotic cells. Caffeine has been reported to induce S-phase condensation in cells where replication is arrested, by accelerating cell cycle progression as well as by uncoupling it from replication; for, in BHK or CHO hamster cells arrested in early S-phase and given caffeine, condensed chromosomes appear well before the normal time at which mitosis occurs in cells released from arrest. However, we have found that this apparent acceleration depends on the technique of synchrony and cell line employed. In other cells, and in synchronized hamster cells where the cycle has not been subjected to prolonged continual arrest, condensation in replication-arrested cells given caffeine occurs at the same time as normal mitosis in parallel populations where replication is allowed to proceed. This caffeine-induced condensation is therefore "premature" with respect to the chromatin structure of the S-phase nucleus, but not with respect to the timing of the normal cycle. Caffeine in replication-arrested cells thus overcomes the restriction on the formation of mitotic condensing factors that is normally imposed during DNA replication, but does not accelerate the timing of condensation unless cycle controls have previously been disturbed by synchronization procedures.  相似文献   

8.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

9.
A temperature-sensitive mutant, designated ts85, was isolated from a mouse mammary carcinoma cell line, FM3A. The ts85 cells grew at 33 °C (permissive temperature) with a doubling time of 18 h, which was almost the same as with wild-type cells, whereas the cell number scarcely increased at all at 39 °C (non-permissive temperature). When the ts85 cells were shifted from 33 to 39 °C, their DNA synthesis fell to below 1% of the initial value in 14 h. RNA or protein synthesis, however, was maintained at the initial levels for at least 14 h at 39 °C. Cytofluorometric analysis of asynchronous cultures and studies with synchronous cultures suggested that the bulk of the cells cultured at 39 °C for 12–18 h were arrested in late S and G2 phases. Electron microscopic observations revealed that chromatin was abnormally condensed into fragmented and compact forms, particularly around nucleoli, in about 80% of cells of an asynchronous culture incubated at 39 °C for 16 h. Cells in mitosis were not detected in such cultures and nuclear membrane and nucleoli were still intact. Such abnormal chromosome condensation was not observed in the ts85 cells at 33 °C or in wild-type cells at either temperature. Since these findings suggest that a ts gene product of ts85 cells is necessary for chromosome condensation, ts85 cells may represent a useful tool for establishing the mechanisms of chromosome condensation. The interrelationship between abnormal chromosome condensation and reduction in DNA synthesis of the ts85 cells is discussed.  相似文献   

10.
Salivary glands were fixed in cold 1 per cent osmium tetroxide in veronal-acetate buffer containing sucrose and embedded in methacrylate mixture or Araldite. The salivary gland nuclei of sciarids show a continuous production of nucleoli, which remain multiple and not consolidated into a single structure. The earliest recognizable nucleoli, which we call "elementary nucleoli," are aggregations of a few paired 40 A fibrils and a few 150 A particles, at many points within chromosome bands. Further development consists of the detachment of the elementary nucleoli from their points of origin and their subsequent mutual coalescence. As a result, dense patches of nucleolar material are formed which become large nucleoli at the surface of chromosomes, either attached to the band or free. The fully formed nucleoli have a characteristic dual structure with a narrow dense periphery and a broader less dense internum. Fibrils and particles are present in both regions, and the difference in density reflects differences in the packing of the two structural elements. The duality in structure is lost in later stages. The nucleolar fibrils appear to be similar to the chromosomal fibrils. The 150 A particles in nucleoli, chromosomes, and nuclear sap seem identical. The significance of these observations is discussed for nucleologenesis in general.  相似文献   

11.
Large multinucleate (LMN) HeLa cells with more than 10–50 nuclei were produced by random fusion with polyethylene glycol. The number of nuclei in a particular stage of the cell cycle at the time of fusion was proportionate to the duration of the phase relative to the total cell cycle. The fused cells did not gain generation time. Interaction of various nuclei in these cells has been observed. The nuclei initially belonging to the G1-or S-phase required a much longer time to complete DNA synthesis than in mononucleate cells. Some of the cells reached mitosis 15 h after fusion, whereas others required 24 h. The cells dividing early, contained a larger number of initially early G1-phase nuclei than those cells dividing late. The former very often showed prematurely condensed chromosome (PCC) groups. In cells with a large number of advanced nuclei the few less advanced nuclei could enter mitosis prematurely. On the other hand, the cells having a large number of nuclei belonging initially to late S-or G2-phase took longer to reach mitosis. These nuclei have been taken out of the normal sequence and therefore failed to synthesize the mitotic factors and depended on others to supply them. Therefore the cells as a whole required a longer period to enter mitosis. Although the nuclei became synchronized at metaphase, the cells revealed a gradation in prophase progression in the different nuclei. At the ultrastructural level the effect of advanced nuclei on the less advanced ones was evident with respect to chromosome condensation and nuclear envelope breakdown. Less advanced nuclei trapped among advanced nuclei showed PCC and nuclear envelope breakdown prematurely, whereas mitotic nuclei near interphase or early prophase nuclei retained their nuclear envelopes for a much longer time. PCC is closely related to premature breakdown of the nuclear envelope. Our observations clearly indicate that chromosome condensation and nuclear envelope breakdown are two distinct events. Kinetochores with attached microtubules could be observed on prematurely condensed chromosomes. Kinetochores of fully condensed chromosomes often failed to become connected to spindle elements. This indicates that the formation of a functional spindle is distinct from the other events and may depend on different factors.  相似文献   

12.
13.
Phosphorylation of nuclear proteins   总被引:1,自引:0,他引:1  
Many nuclear proteins are phosphorylated: they range from enzymes to several structural proteins such as histones, non-histone chromosomal proteins and the nuclear lamins. The pattern of phosphorylation varies through the cell cycle. Although histone H1 is phosphorylated during interphase its phosphorylation increases sharply during mitosis. Histone H3, chromosomal protein HMG 14 and lamins A, B and C all show reversible phosphorylation during mitosis. Several nuclear kinases have been characterized, including one that increases during mitosis and phosphorylates H1 in vitro. Factors have been demonstrated in maturing amphibian oocytes and mitotic mammalian cells that induce chromosome condensation and breakdown of the nuclear membrane. The possibility that they are autocatalytic protein kinases is considered. The location of histone phosphorylation sites within the nucleosome is consistent with a role for phosphorylation in modulating chromatin folding.  相似文献   

14.
15.
Osmotic regulation of intracellular water during mitosis is poorly understood because methods for monitoring relevant cellular physical properties with sufficient precision have been limited. Here we use a suspended microchannel resonator to monitor the volume and density of single cells in suspension with a precision of 1% and 0.03%, respectively. We find that for transformed murine lymphocytic leukemia and mouse pro–B cell lymphoid cell lines, mitotic cells reversibly increase their volume by more than 10% and decrease their density by 0.4% over a 20-min period. This response is correlated with the mitotic cell cycle but is not coupled to nuclear osmolytes released by nuclear envelope breakdown, chromatin condensation, or cytokinesis and does not result from endocytosis of the surrounding fluid. Inhibiting Na-H exchange eliminates the response. Although mitotic rounding of adherent cells is necessary for proper cell division, our observations that suspended cells undergo reversible swelling during mitosis suggest that regulation of intracellular water may be a more general component of mitosis than previously appreciated.  相似文献   

16.
The synthesis and assembly of ribosomal subunits take place in the nucleolus. The nucleolus forms in the nucleus around the repeated ribosomal gene clusters and undergoes cyclic changes during the cell cycle. Although the nucleolus is easily visualized by light microscopy of cells in vitro, the nucleolus has not been imaged in cells in vivo. We report here development of a mouse model to visualize the nucleolus cycle of cancer cells in live mice. HT-1080 human fibrosarcoma cells were labeled in the nucleus with histone H2B-GFP and with retroviral RFP in the cytoplasm. The nucleolus was visualized by contrast to the fluorescence of GFP expressed in the nucleus. HT-1080 dual-color cells were seeded on the surface of a skin-flap of nude mice. The inside surface of the skin-flap was directly imaged with a laser scanning microscope 24 hours after seeding. The nucleoli of the cancer cells were clearly imaged in real-time. The appearance of the nucleoli changed dramatically during the cell cycle. During mitosis, the nucleolus disappeared. After mitosis, the nucleoli decreased in number and increased in size. The nucleolus appears to have a major role in cell cycle regulation effected at least in part by sequestering proteins which affect cell cycle progression. Nucleolar imaging could be used for more precise determination of cancer-cell position in the cell cycle in vivo.  相似文献   

17.
18.
19.
We investigated the perichromosomal architecture established during mitosis. Entry into mitosis brings about a dramatic reorganization of both nuclear and cytoplasmic structures in preparation for cell division. While the nuclear envelope breaks down, nuclear proteins are redistributed during chromosome condensation. Some of these proteins are found around the chromosomes, but little is known concerning their nature and function. Ten autoimmune sera were used to study the microenvironment of chromosomes and, in particular, the chromosome periphery. They were selected for their anti-nucleolar specificity and were found to recognize three nucleolar proteins that coat the chromosomes during mitosis. The distribution of these antigens was followed through the cell cycle by confocal laser scanning microscopy. The antigens dispersed very early during prophase and simultaneously with the chromosome condensation suggesting a correlation between these two processes. The antigens have apparent molecular weights of 53, 66, and 103 kDa on SDS-PAGE migration. Elution of the antibodies and immunopurification showed that they are RNA-associated proteins. The coimmunoprecipitating RNA moiety involved in these RNPs appeared to be U3, but the antigens are not related to the fibrillarin family. Therefore, small nucleolar RNPs follow the same distribution during mitosis as that described for small nuclear RNPs. Possible functions for these antigens are discussed.  相似文献   

20.
MPM-2 antibody reacts with a subset of mitotic phosphoproteins. We followed localization of MPM-2 immunoreactive material and localization of microtubules during cell cycle progression in a highly synchronous population of Vicia faba root meristem cells and isolated nuclei. The MPM-2 antibody labelling showed significant cell cycle dependence. MPM-2 nuclear reactivity was weak and homogeneous in G1 and S phase of the cell cycle and became stronger and heterogeneous during G2, resembling staining of the nuclear matrix, with maximum staining at the G2/M interface. Similarly the staining intensity of nucleoli increased from late G1 phase to nucleoli dispersion in early prophase. During mitosis MPM-2 immunoreactivity was associated with spindle configurations and the brightest signal was localized in kinetochores from prophase to metaphase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号