首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
—Brain glucose and glycogen concentrations have been studied in mice treated with allylglycine, 4-deoxypyridoxine and isoniazid, and the effects compared with the preconvulsive increase in brain glucose and glycogen concentration that follows d , l -methionine sulphoximine treatment. Allylglycine (180 mg/kg), 4-deoxypyridoxine (250 mg/kg), isoniazid (150 mg/kg) and d ,l -methionine sulphoximine (300 mg/kg) when given to mice at room temperature, cause a fall in rectal temperature which can be prevented by maintaining the mice in an incubator at 33-34°C. An increase in brain glucose concentration is seen after allylglycine (+ 133%), d ,l -methionine sulphoximine (+ 113%) and 4-deoxypyridoxine (+ 70%) treatment when mice are kept at room temperature and killed before convulsions occur. This is associated with a rise in blood glucose concentration after allylglycine, but not after the other drugs. Preventing the fall in rectal temperature reduces, but does not abolish, the rise in brain glucose concentration seen after allylglycine, d ,l -methionine sulphoximine and 4-deoxypyridoxine. Brain glycogen concentration increases at room temperature after D,L-methionine sulphoximine and 4-deoxypyridoxine, but in mice with maintained body temperature only 4-deoxypyridoxine produces an increase in brain glycogen. Isoniazid does not increase brain glucose or glycogen at room temperature, but reduces their concentration in mice kept in the incubator. All four drugs are known to act on amino acid metabolism; d ,l -methionine sulphoximine potently inhibits glutamine synthetase whereas 4-deoxypyridoxine, allylglycine and isoniazid inhibit glutamate decarboxylase. The connection, if any, between a block in the further metabolism of glutamate and an increase in brain glucose and glycogen is unknown.  相似文献   

2.
—Glutamate decarboxylase (l -glutamate 1-carboxy-lyase EC 4.1.1.15; GAD) has been isolated from guinea pig brain and some of its properties studied. Many of its properties indicated that it was similar if not identical to the decarboxylase isolated from other species. It showed normal Michaelis-Menten kinetics (Km= 8 mM), had a pH optimum of 6.6–7.0 and was protected by sulphydryl reagents. Its activity was stimulated by pyridoxal phosphate and inhibited by a variety of anions, cations and carbonyl trapping agents. Allylglycine strongly inhibited GAD isolated from the brains of several different species. The mechanism of this inhibition has been studied kinetically and compared to chloride induced inhibition. The kinetic data presented is consistent with the idea that allylglycine inhibits the enzyme by a partially reversible inactivation rather than by reversible competitive inhibition.  相似文献   

3.
DL-Allylglycine was resolved into the L- and D-stereoisomers using hog kidney acylase. Both isomers were active as convulsants after administration to mice. The dose of D-allylglycine required to induce convulsions was greater than that of the L-isomer. Studies on the concentration of the two isomers in brain suggest that the lower effectiveness of D-allylglycine is partially due to its slower penetration into the brain through the blood-brain barrier. Both isomers of allylglycine inhibited brain glutamate decarboxylase in vitro to approximately the same extent, however, in vivo L-allylglycine inhibited the enzyme more strongly than the D isomer. Concentrations of allylglycine which caused a significant inhibition of L-glutamate decarboxylase in vivo were ineffective in inhibiting the enzyme in vitro. Oxidation products derived from L- or D-allylglycine by the action of either L- or D-amino acid oxidase caused an almost complete inhibition of the enzyme in vitro. It is suggested that a common intermediate derived from the two isomers (possibly 2-keto-4-pentenoic acid) is responsible for the in vivo inhibition of L-glutamate decarboxylase and possibly also for the induction of convulsions.  相似文献   

4.
Abstract— 2-Keto-4-pentenoic acid, a potent inhibitor of brain glutamate decarboxylase (Orlowski et al., 1977) was prepared by oxidative deamination of l -allylglycine with snake venom l -amino acid oxidase. In the presence of glutamate the keto acid is a competitive inhibitor of the enzyme with respect to glutamate; its Ki is 2.4 ± 10?6m . After preincubation of brain glutamate decarboxylase with 2-keto-4-pentenoic acid in the absence of glutamate, a slow and incomplete reactivation is obtained by prolonged dialysis, Sephadex gel-filtration, and dilution, suggesting the formation of a slowly dissociating enzyme-inhibitor complex and partial inactivation of the enzyme. In vivo inhibition of brain glutamate decarboxylase after administration of allylglycine is maximal after 2-8 h with activity returning to normal after 16 h. The inhibition of the enzyme after administration of d -allylglycine was greatest in the cerebellum and the medulla-pons area, the sites of the highest activity of d -amino acid oxidase. These results are interpreted as strongly supporting the postulate that allylglycine-induced inhibition of brain glutamate decarboxylase is due to the in vivo formation of 2-keto-4-pentenoic acid.  相似文献   

5.
—The effects of several anaesthetic and hypnotic compounds with well-defined excitatory side-effects on glutamate decarboxylase and γ-aminobutyric acid transaminase activity have been examined. The dissociative anaesthetics ketamine and γ-hydroxybutyric acid produced competitive inhibition of glutamate decarboxylase with respect to glutamate at concentrations which had no effect on GABA transaminase activity. The inhibitor constant (Ki) values were, ketamine: 13.3 mm , γ-hydroxybutyric acid; 8.8 mm . The steroid anaesthetic alphaxalone was also a potent competitive inhibitor of glutamate decarboxylase Ki= 4.1 mm ). Pentobarbitone, thiopentone and methohexitone non-competitively inhibited both glutamate decarboxylase and GABA-transaminase but only at high concentration (> 20 mm ). None of the drugs tested produced any significant change in brain GABA or glutamate levels following the injection of an hypnotic or anaesthetic dose. It is proposed that an alteration in the rate of GABA synthesis as a result of the inhibition of glutamate decarboxylase could explain the convulsive properties of the dissociative anaesthetics when given at high doses.  相似文献   

6.
Substantial synthesis of γ-aminobutyric acid occurs in rat renal cortex. Renal glutamate decarboxylase activity (24.3±2.9 (S.E.) nmols/mg protein per h) is 15% of that in brain; renal γ-aminobutyric acid content (39.5±5.3 (S.E.) nmols/g wet wt.) is 5% of the whole brain concentration. Properties of glutamate decarboxylase were studied in homogenates of rat renal cortex and rat brain under conditions for which γ-aminobutyric acid formation from [2,3-3H]glutamate and CO2 release from [1-14C]glutamate were equal. Several properties of renal glutamate decarboxylase distinguish it from the corresponding brain enzyme: (1) renal glutamate decarboxylase is selectively inhibited by cysteine sulfinic acid (Ki = 5·10?5 M) ; (20 renal glutamate decarboxylase is less sensitive (Ki = 3–5·10?5 M)_to inhibition by aminooxyacetic acid than is the brain enzyme (Ki = 1·10?6 M); (3) brain but not renal glutamate decarboxylase activity can be substantially stimulated in vitro by the addition of exogenous pyridoxal 5′-phosphate; (4) renal glutamate decarboxylase is significantly decreased in renal cortex from rats on a low-salt diet. Proximal tubules are enriched in glutamate decarboxylase compared to the activity in whole renal cortex or glomeruli (42, 22 and 14 nmols/mg protein per h, respectively). We speculate that renal γ-aminobutyric acid synthesis does not reflect the presence of GABAergic renal nerves, but may serve a function in proximal tubular cells.  相似文献   

7.
The action of the convulsant drugs, methionine sulfoximine (MSO), 3-mercaptopropionate (3-MP), megimide (MG), and allylglycine on the binding ofl-[14C]aspartate,l-[14C]glutamate and [14C]GABA to a hydrophobic protein fraction isolated from rat cerebral cortex was studied. Using the convulsant at 10–4 M concentration and the radioactive ligands at 106 M the binding ofl-[14C]glutamate was inhibited 60% by 3-MP and 40% by MSO, while MG and allylglycine had no effect. The binding ofl-[14C]aspartate was inhibited 55%, and 10–20% by 3-MP and MSO, respectively, while MG and allylglycine had not effect. None of the drugs mentioned, except for a minimal inhibition by MG, altered the binding of [14C]GABA. Neither MSO nor 3-MP affected the high-affinity sites forl-[14C]glutamate orl-[14C]aspartate, but they had a strong inhibitory action on the medium affinity site. These results are discussed in relation to the possible mechanism of action of these drugs onl-glutamate andl-aspartate receptors.  相似文献   

8.
A single assay system has been developed for six enzymes of glutamate metabolism: glutamate dehydrogenase, glutaminase, asparate aminotransferase, γ-aminobutyrate aminotransferase, alanine aminotransferase, and glutamate decarboxylase. The first five are assayed by coupling them to Escherichia coli glutamate decarboxylase and measuring the release of 14CO2 from radioactive substrates. Glutamate decarboxylase is assayed directly. The assays are simple, use but one technique, and require very little working time. At a reasonable cost per assay, they are considerably more sensitive than other commonly used assays for the same enzymes. The sensitivity of the assay at a fixed price increases as the substrate concentration decreases.  相似文献   

9.
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein.  相似文献   

10.
In this study, the effect of glutamate decarboxylase from Pyrococcus horikoshii on gamma-aminobutyric acid (GABA) production was investigated in Escherichia coli for the first time. E. coli with overexpressed P. horikoshii glutamate decarboxylase was cultured at various pH levels and temperatures to determine the optimum conditions for GABA production. The highest final GABA concentration, 5.07 g/L, was obtained from 10 g/L of monosodium glutamate (MSG) with a GABA yield of 83% at 30°C and pH 3.5. When P. horikoshii glutamate decarboxylase was introduced into a GABA aminotransferase knock-out E. coli XBT strains, 5.69 g/L of GABA was produced with a GABA yield of 93%.  相似文献   

11.
Coastal, benthic invertebrates with complex life history strategies are exposed to stage- and habitat-specific selective forces. In the coastal environment, benthic adults are exposed to polycyclic aromatic hydrocarbon pollutants (PAHs) due to their proximity to human activities (shipping, urbanization, and industrialization). Benthic invertebrates produce lipid-rich eggs or larvae that absorb PAHs from polluted estuaries and coastal waters. The larvae of many coastal invertebrates move offshore following release from benthic adults. During development in offshore waters, larvae of some species are exposed to relatively high levels of ultraviolet (UV) radiation. Marine organisms vary in their tolerance to PAHs and UV radiation. The purpose of this study was to examine the effects of the sequential exposure of the larvae of marine crabs to PAHs and UV radiation.Using laboratory experiments, the larvae of four crab species were exposed to PAHs and UV radiation. There was a significant synergistic effect of exposure to PAH (fluoranthene or pyrene) and UV radiation on larvae of the spider crab (Libinia dubia), the stone crab (Menippe adina) and the mud crab (Panopeus herbstii). Larvae of blue crabs (Callinectes sapidus) were exposed to PAHs and UV radiation in both laboratory and solar UV experiments. Significantly higher mortality occurred for C. sapidus larvae using either type of UV-artificial or solar.Larvae of coastal invertebrates with complex life history strategies are susceptible to the combined effects of PAHs and UV radiation. In this study, the exposure of crab larvae to PAHs and UV radiation resulted in mortality to crab larvae using laboratory and solar UV experiments. There were no effects on larval crab mortality due to PAH or UV radiation independently but mortality was as high as 100% when both factors were present.  相似文献   

12.
13.
This study investigated the effect of glutamate decarboxylase from Neurospora crassa OR74A on GABA production in Escherichia coli. GABA is one of the inhibitory neurotransmitters in the mammalian central nervous system, and can be used as a precursor of promising biopolymer Nylon 4. E. coli that overexpressed N. crassa glutamate decarboxylase was cultured at various pH levels and temperatures to determine optimum conditions for GABA production. When the recombinant E. coli strain was cultured at 30°C and pH 3, a final GABA concentration of 5.26 g/L was obtained from 10 g/L of monosodium glutamate (MSG), corresponding to a GABA yield of 86.23%.  相似文献   

14.
Sobue and Nakajima (1978) reported that GABA formation from putrescine is significant in chick embryo brain between days 6 and 8 of incubation. They attributed an important functional role to the putrescine-derived GABA. We found that depletion of putrescine and spermidine in chick embryos by inhibition of ornithine decarboxylase activity did not decrease the in vivo rate of GABA formation, showing that putrescine is, from a quantitative point of view, a negligible source for GABA in chick embryo brain. The changes of brain GABA levels obtained after administration of glutamate decarboxylase inhibitors and in vitro determinations of glutamate decarboxylase activity were compatible with the assumption that GABA is mainly formed by decarboxylation of l-glutamate, even during early brain development. Participation of the NAD+-dependent, aerobic transformation of glutamate into GABA (Seiler and Wagner, 1976) in the overall GABA production of chick embryo brain could, however, not be excluded.  相似文献   

15.
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.  相似文献   

16.
Presumptive gynoparae of Aphis fabae and Myzus persicae were exposed to various levels of kinoprene (Zoecon's ZR 777) by being placed as 4th-instar alatiform larvae on bean or radish seedlings that had been sprayed with different concentrations of kinoprene in an acetone-tween-water emulsion. Larvae exposed to the highest (0.1%) concentration tested developed into adults 1 to 2 days sooner than those on control plants. The adults on the treated plants had variously deformed wings, reduced sclerotization (and pigmentation in the case of M. persicae) and other apteriform features. On reaching adulthood the affected aphids settled to feed and started to larviposit some days earlier than the control aphids. After two weeks as adults, treated gynoparae of M. persicae produced more larvae than the 7 to 9 typically deposited by control gynoparae under the short-day and cool temperature conditions employed in these tests.Whereas most or all of the larvae produced by the control gynoparae developed into oviparae (apterous, egg-laying, sexual females), gynoparae exposed to 0.1% kinoprene-treated plants predominantly produced alatiform viviparous offspring. If the latter were allowed to develop on untreated plants they deposited a few oviparous larvae. Alatiform virginoparae of M. persicae (from the same holocyclic strain that produced the gynoparae) also responded to kinoprene by developing wing deformities and by producing alatiform offspring. In contrast, alatiform virginoparae from an androcyclic strain of M. persicae, although developing wing deformities, produced only apterous progeny.The stimulation by kinoprene of wing development and parthenogenesis in the progeny of treated gynoparae is discussed in the light of our present knowledge of these aspects of aphid polymorphism.  相似文献   

17.
Purification and some properties of L-glutamate decarboxylase from human brain   总被引:17,自引:0,他引:17  
Glutamate decarboxylase (EC 4.1.1.15) from human brain has been purified 8000-fold with respect to the initial homogenate. The molecular weight of the native enzyme was found to be 140000 by electrophoresis on a polyacrylamide gradient gel slab. The presence of a single protein band (Mr 67000) on sodium dodecylsulphate/polyacrylamide gel and the existence of only one N-terminal amino acid suggest that the enzyme consists of two similar if not identical polypeptide chains. The Km of the enzyme at the optimum pH of 6.8 is about 1.3 x 10(-3) M for glutamate and 0.13 x 10(-6) M for pyridoxal phosphate. The analysis of the effects of various inhibitors of mouse brain glutamate decarboxylase on the human enzyme confirms the strong competitive inhibition caused by 3-mercaptopropionic acid (Ki = 2.7 x 10(-6) M) while the Ki values for allylglycine and chloride ion are 1.8 x 10(-2) M and 2.2 x 10(-2) M, respectively.  相似文献   

18.
The relationship between the susceptibility to convulsions, the content of pyridoxal 5′-phosphate and the activity of pyridoxal kinase (EC 2.7.1.35) and glutamate decarboxylase (EC 4.1.1.15) in brain, was studied in the developing mouse. Seizures were induced by pyridoxal phosphate-σ-glutamyl hydrazone (PLPGH), a drug previously reported to reduce the levels of pyridoxal 5′-phosphate and as a consequence to inhibit the activity of glutamate decarboxylase in brain of adult mice. It was found that the seizure pattern, as well as the time of appearance of convulsions, differed between 2- and 5-day old mice and 10-day old or older mice, indicating a progressive increase in seizure susceptibility during development. In brain, pyridoxal kinase activity and pyridoxal 5′-phosphate levels were decreased by the administration of PLPGH at all ages studied, whereas glutamate decarboxylase activity was inhibited less than 25% in 2- and 5-day old mice, and about 50% thereafter. Parallelly, the activation of glutamate decarboxylase by pyridoxal 5′-phosphate added in vitro to control homogenates was less in 2- and 5-day old mice than in older animals. It is concluded that the increase in the susceptibility to seizures induced by PLPGH during development is probably related to the increase observed in the sensitivity of glutamate decarboxylase in vivo to a decrease of pyridoxal 5′-phosphate levels. The correlation between pyridoxal 5′-phosphate, glutamate decarboxylase, and seizure susceptibility seems to be established at about 10 days of age.  相似文献   

19.
A radioisotope assay for the measurement of glutamine synthetase activity has been developed in which tandemly arranged ion-exchange columns of Dowex 1-acetate and Amberlite CG-50 (H+) are used to separate the product, [14C]glutamine, from unreacted [U-14C]glutamate and other labeled compounds, particularly γ-aminobutyrate, that are formed by competing reactions. The technique is sensitive, reproducible, and suitable for multiple determinations. The assay has been used successfully to measure glutamine synthetase activity in neural and nonneural tissues which contain appreciable amounts of glutamate decarboxylase activity.  相似文献   

20.
Moore W  Song XB  Di Giulio A 《ZooKeys》2011,(90):63-82
Larvae of the ground beetle genus Eustra Schmidt-Goebel are described and illustrated for the first time and some biological notes are reported. One specimen of an unknown Eustra species was collected while excavating a nest of the ant Pachycondyla javana Mayr, in Taiwan, which is the first report of a paussine associated with a member of the ant subfamily Ponerinae. Several larvae and adults of a second species, Eustra chinensis Bänninger, were collected in Shanghai under bark with no association with ants. First instar larvae of the latter species were also reared in the lab. The occurrence of larvae of the genus Eustra both inside and outside ant nests, together with a report of adults collected inside a nest in Taiwan, suggests that members of this genus may be facultative predators or facultative symbionts of ants, an attribute that has never been reported for this genus. The larvae of Eustra show several unique features, including a peculiar bidentate mandibular apex, an extremely long galea, one of two tarsal claws greatly reduced, abdominal setae (including those of terminal disk) elongate and clavate at apex, urogomphi wide and flattened, and inflated sensilla S-I. Larvae were studied by both optical and scanning electron microscopy, their morphological features are compared with those of other described Paussinae larvae, and their potential phylogenetic and functional significance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号