首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the effects of high-fat diets rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Wistar rats bearing subcutaneous implants of the Walker 256 tumour were fed pelleted chow containing low DHA/EPA or high DHA/EPA. The presence of n-3 polyunsaturated fatty acids (PUFAs) led to a marked suppression (35-46%) of tumour growth over a 12 day period. Both the whole tumour homogenate and the Percoll-purified mitochondrial fraction presented significant changes in fatty acid composition. The levels of EPA increased in both n-3 dietary groups while the levels of DHA increased only in the high DHA/EPA group, in comparison with the control chow-fed group. The presence of n-3 PUFAs led to an increase in mitochondrial acyl CoA synthetase activity, but neither the cytoplasmic acyl CoA content nor the n-3 fatty acid composition of the cytoplasmic acyl CoAs was altered by the diet. The content of thiobarbituric acid-reactive substances (TBARS) was increased in the low DHA/EPA group but was unchanged in the high DHA/EPA group. In vitro studies with the Walker 256 cell line showed a 46% decrease in cell growth in the presence of either EPA or DHA which was accompanied by a large decrease in the measured mitochondrial membrane potential. The TBARS content was increased only in the EPA-exposed cells. Cell cycle analysis identified a decrease in G0-G1 phase cells and an increase in G2-M phase cells and apoptotic cells, for both EPA and DHA-exposed cells. The data show that the presence of n-3 PUFAs in the diet is able to significantly after the growth rate of the Walker 256 tumour. The involvement of changes in mitochondrial membrane composition and membrane potential have been indicated for both EPA and DHA, while changes in lipid peroxidation have been identified in the presence of EPA but not of DHA.  相似文献   

2.
Walker 256 tumour-bearing rats were fed pelleted chow containing low-gamma-linolenic acid (GLA) (2.98%) or high-GLA (5.55%) during the twelve-day period after subcutaneous implantation of the tumour. The presence of n-6, polyunsaturated GLA in the diet caused a concentration-dependent decrease in tumour growth, reaching an almost 50% reduction in final tumour weight in the high-GLA group. The eicosatrienoic acid content of the whole tumour homogenate and of the Percoll-purified mitochondrial fraction was increased by the GLA-rich diets. Changes in the fatty acid composition of the cytoplasmic acyl CoA pool were also found, with increases in GLA content in both the low- and high-GLA groups. Additionally, increases in eicosatrienoic acid and arachidonic acid were found in the high-GLA group. Both the cytoplasmic acyl CoA content and the mitochondrial acyl CoA synthetase activity were increased by GLA in the diet and lipid peroxidation was also increased as determined by an increase in TBARS content. Changes in mitochondrial fatty acid composition were accompanied by a decrease in the mitochondrial membrane potential in the high-GLA group. Tumours from the control and GLA groups were examined by transmission electron microscopy. This revealed an increase in mitochondrial area and volume in the high-GLA group, in comparison with the control group, as well as a change in general cell ultrastructure, with many cells found in an apoptotic state or in a necrotic state, possibly secondary to apoptosis. The data presented show that the addition of GLA to the diet of Walker 256 tumour-bearing rats can greatly decrease the rate of development of the tumour burden. This may be, in part, due to the accumulation of poorly metabolised acyl CoA's within the tumour cell cytoplasm which, when coupled with altered mitochondrial composition, membrane potential and ultrastructure, may be a signal for cell death.  相似文献   

3.
Peroxisomal β‐oxidative degradation of compounds is a common metabolic process in eukaryotes. Reported benzoyl‐coenzyme A (BA‐CoA) thioesterase activity in peroxisomes from petunia flowers suggests that, like mammals and fungi, plants contain auxiliary enzymes mediating β‐oxidation. Here we report the identification of Petunia hybrida thioesterase 1 (PhTE1), which catalyzes the hydrolysis of aromatic acyl‐CoAs to their corresponding acids in peroxisomes. PhTE1 expression is spatially, developmentally and temporally regulated and exhibits a similar pattern to known benzenoid metabolic genes. PhTE1 activity is inhibited by free coenzyme A (CoA), indicating that PhTE1 is regulated by the peroxisomal CoA pool. PhTE1 downregulation in petunia flowers led to accumulation of BA‐CoA with increased production of benzylbenzoate and phenylethylbenzoate, two compounds which rely on the presence of BA‐CoA precursor in the cytoplasm, suggesting that acyl‐CoAs can be exported from peroxisomes. Furthermore, PhTE1 downregulation resulted in increased pools of cytoplasmic phenylpropanoid pathway intermediates, volatile phenylpropenes, lignin and anthocyanins. These results indicate that PhTE1 influences (i) intraperoxisomal acyl‐CoA/CoA levels needed to carry out β‐oxidation, (ii) efflux of β‐oxidative products, acyl‐CoAs and free acids, from peroxisomes, and (iii) flux distribution within the benzenoid/phenylpropanoid metabolic network. Thus, this demonstrates that plant thioesterases play multiple auxiliary roles in peroxisomal β‐oxidative metabolism.  相似文献   

4.
The functional characterization of wax biosynthetic enzymes in transgenic plants has opened the possibility of producing tailored wax esters (WEs) in the seeds of a suitable host crop. In this study, in addition to systematically evaluating a panel of WE biosynthetic activities, we have also modulated the acyl‐CoA substrate pool, through the co‐expression of acyl‐ACP thioesterases, to direct the accumulation of medium‐chain fatty acids. Using this combinatorial approach, we determined the additive contribution of both the varied acyl‐CoA pool and biosynthetic enzyme substrate specificity to the accumulation of non‐native WEs in the seeds of transgenic Camelina plants. A total of fourteen constructs were prepared containing selected FAR and WS genes in combination with an acyl‐ACP thioesterase. All enzyme combinations led to the successful production of wax esters, of differing compositions. The impact of acyl‐CoA thioesterase expression on wax ester accumulation varied depending on the substrate specificity of the WS. Hence, co‐expression of acyl‐ACP thioesterases with Marinobacter hydrocarbonoclasticus WS and Marinobacter aquaeolei FAR resulted in the production of WEs with reduced chain lengths, whereas the co‐expression of the same acyl‐ACP thioesterases in combination with Mus musculus WS and M. aquaeolei FAR had little impact on the overall final wax composition. This was despite substantial remodelling of the acyl‐CoA pool, suggesting that these substrates were not efficiently incorporated into WEs. These results indicate that modification of the substrate pool requires careful selection of the WS and FAR activities for the successful high accumulation of these novel wax ester species in Camelina seeds.  相似文献   

5.
6.
Gamma-linolenic acid (GLA) is known to be an inhibitor of Walker 256 tumour growth in vivo and causes changes in both mitochondrial structure and cellular metabolism. The aim of the present study was to investigate in greater detail the changes in energy metabolism and ultrastructure induced by GLA in this tumour model. A diet containing 5.5% GLA, which is sufficient to cause a 45% decrease in tumour growth, was found to almost double the triacylglycerol (TAG) content of the tumour and to increase the quantity of 20:3 n-6, 20:4 n-6, 22:4 n-6 and 22:5 n-6 in the TAG fraction as determined by gas chromatography-mass spectrometry (GCMS) analysis. Morphometric analysis of the tumour by electron microscopy confirmed this increase in TAG content, identifying a doubling of lipid droplet content in the GLA dietary group. The surface density of mitochondrial cristae was reduced, along with a reduction in the number of contact sites (CS) and matrix granules. These three parameters are likely indicators of a reduction in mitochondrial metabolic activity. Measurement of hexokinase activity identified that much of the total hexokinase activity was in the mitochondrially bound form (66.5%) in the control tumour and that GLA caused a decrease in the amount of enzyme in the bound form (39.3%). The fatty acyl chain composition of the tumour mitochondrial subfractions, outer membranes (OM), CSs and inner membranes (IM) was determined by GCMS. All subfractions showed considerable increases in 20:3 n-6 and decreases in 18:1 n-9, 18:2 n-6 and 22:6 n-3, when exposed to GLA diet. These changes were reflected in a large increase in the n-6/n-3 ratio in the GLA OM vs. the control OM, 21.299 vs. 6.747, respectively. The maximal activity of OM carnitine palmitoyltransferase I (CPT I) was found to be decreased by 61.6% in the GLA diet group. This was accompanied by a decrease in malonyl CoA sensitivity and a decrease in affinity for 16:0 CoA substrate. Such changes in CPT I may be the cause of cytoplasmic acyl CoA accumulation seen in this tumour model. These effects, together with previously reported increases in lipid peroxidation, lead to the conclusion that GLA may cause inhibition of tumour cell growth through separate but interlinked pathways, all of which eventually lead to apoptosis and a decrease in tumour development. The influence of mitochondrial OM fatty acyl chain composition upon two important enzymes of energy metabolism, hexokinase and CPT I, both of which have been linked to apoptosis, is of considerable importance for future studies on fatty acid-induced cell death.  相似文献   

7.
1. The effect on rat liver peroxisomal beta-oxidation of feeding diets containing various amounts of dietary oils was investigated. With increasing amounts (5-25%, w/w) of soya-bean oil an apparent, but not statistically significant, increase of 1.5-fold was found both in specific activity, and in total liver activity. Increasing amounts of partially hydrogenated marine oil revealed a sigmoidal dose-response-curve, giving a 4-6-fold increase in the peroxisomal beta-oxidation activity at 20% or more of this oil in the diet. 2. Addition of small amounts of soya-bean oil to the marine-oil diet had no effect on the peroxisomal beta-oxidation activity, but decreased the C20:3(5,8,11) fatty acid/C20:4(5,8,11,14) fatty acid ratio in liver phospholipids from 0.74 to 0.01. 3. Starvation for 2 days led to a 1.5-1.8-fold increase in the peroxisomal beta-oxidation activity in rats previously fed on a standard pelleted diet, but had no effect in rats given high-fat diets. 4. Feeding partially hydrogenated marine oil or partially hydrogenated rape-seed oil resulted in higher activities than the corresponding unhydrogenated oils. 5. No significant differences in the effect on peroxisomal beta-oxidation could be detected between diets containing rape-seed oils with 15 or 45% erucic acid respectively. 6. These findings are discussed in relation to the possible effects of C22:1 and trans fatty acids in the process leading to increased peroxisomal beta-oxidation activity in the liver.  相似文献   

8.
We have confirmed that coenzyme A is required for rat fatty acid synthetase activity (T. C. Linn, M. J. Stark, and P. A. Srere, 1980, J. Biol. Chem.255, 1388–1392). When rat liver or mammary gland fatty acid synthetase was assayed in the presence of a CoA-scavenging system such as ATP citrate lyase, almost complete inhibition of fatty acid synthesis was observed. The inhibition was reversed by addition of CoA or pantetheine, but not by addition of N-acetylcysteamine or other thiols. In the absence of CoA, the rate of elongation of acyl moieties on both native fatty acid synthetase and fatty acid synthetase lacking the chain-terminating thioesterase I component (trypsinized fatty acid synthetase) was reduced 100-fold. All of the palmitate synthesized slowly by the CoA-depleted native multienzyme was released, by the thioesterase I component, as the free fatty acid; only shorter-chainlength acyl moieties remained bound to the enzyme. The acyl-S-multienzyme thioesters formed by the trypsinized fatty acid synthetase in the absence of CoA contained saturated moieties of chain length C6-C16; addition of CoA promoted elongation of the acyl-S-multienzyme thioesters without release from the enzyme. The transfer of acetyl and malonyl moieties from CoA to the multienzyme, the reduction of S-acetoacetyl-N-acetylcysteamine and S-crotonyl-N-acetylcysteamine, and the dehydration of S-β-hydroxybutyryl-N-acetylcysteamine, reactions catalyzed by the fatty acid synthetase, were not dependent on the presence of CoA. The hydrolysis of acyl-S-multienzyme catalyzed by thioesterase I, the resident chain-terminating component of the fatty acid synthetase, and thioesterase II, a monofunctional mammary gland chain-terminating enzyme, was also independent of CoA availability as was hydrolysis of an acyl-S-pantetheine pentapeptide isolated from the multienzyme. On the basis of these observations we conclude that CoA is required for the elongation of acyl moieties on the fatty acid synthetase but not for their release from the multienzyme.  相似文献   

9.
Gamma-linolenic acid (GLA) is known to be an inhibitor of Walker 256 tumour growth in vivo and causes changes in both mitochondrial structure and cellular metabolism. The aim of the present study was to investigate in greater detail the changes in energy metabolism and ultrastructure induced by GLA in this tumour model. A diet containing 5.5% GLA, which is sufficient to cause a 45% decrease in tumour growth, was found to almost double the triacylglycerol (TAG) content of the tumour and to increase the quantity of 20:3 n?6, 20:4 n?6, 22:4 n?6 and 22:5 n?6 in the TAG fraction as determined by gas chromatography–mass spectrometry (GCMS) analysis. Morphometric analysis of the tumour by electron microscopy confirmed this increase in TAG content, identifying a doubling of lipid droplet content in the GLA dietary group. The surface density of mitochondrial cristae was reduced, along with a reduction in the number of contact sites (CS) and matrix granules. These three parameters are likely indicators of a reduction in mitochondrial metabolic activity. Measurement of hexokinase activity identified that much of the total hexokinase activity was in the mitochondrially bound form (66.5%) in the control tumour and that GLA caused a decrease in the amount of enzyme in the bound form (39.3%). The fatty acyl chain composition of the tumour mitochondrial subfractions, outer membranes (OM), CSs and inner membranes (IM) was determined by GCMS. All subfractions showed considerable increases in 20:3 n?6 and decreases in 18:1 n?9, 18:2 n?6 and 22:6 n?3, when exposed to GLA diet. These changes were reflected in a large increase in the n?6/n?3 ratio in the GLA OM vs. the control OM, 21.299 vs. 6.747, respectively. The maximal activity of OM carnitine palmitoyltransferase I (CPT I) was found to be decreased by 61.6% in the GLA diet group. This was accompanied by a decrease in malonyl CoA sensitivity and a decrease in affinity for 16:0 CoA substrate. Such changes in CPT I may be the cause of cytoplasmic acyl CoA accumulation seen in this tumour model. These effects, together with previously reported increases in lipid peroxidation, lead to the conclusion that GLA may cause inhibition of tumour cell growth through separate but interlinked pathways, all of which eventually lead to apoptosis and a decrease in tumour development. The influence of mitochondrial OM fatty acyl chain composition upon two important enzymes of energy metabolism, hexokinase and CPT I, both of which have been linked to apoptosis, is of considerable importance for future studies on fatty acid-induced cell death.  相似文献   

10.
Very long chain fatty acid (VLCFA) beta-oxidation was compared in homogenates and subcellular fractions of cultured skin fibroblasts from normal individuals and from Zellweger patients who show greatly reduced numbers of peroxisomes in their tissues. beta-Oxidation of lignoceric (C24:0) acid was greatly reduced compared to controls in the homogenates and the subcellular fractions of Zellweger fibroblasts. The specific activity of C24:0 acid beta-oxidation was highest in the crude peroxisomal pellets of control fibroblasts. Fractionation of the crude mitochondrial and the crude peroxisomal pellets on Percoll density gradients revealed that the C24:0 acid oxidation was carried out entirely by peroxisomes, and the peroxisomal beta-oxidation activity was missing in Zellweger fibroblasts. In contrast to the beta-oxidation of C24:0 acid, the beta-oxidation of C24:0 CoA was observed in both mitochondria and peroxisomes. We postulate that a very long chain fatty acyl CoA (VLCFA CoA) synthetase, which is different from long chain fatty acyl CoA synthetase, is required for the effective conversion of C24:0 acid to C24:0 CoA. The VLCFA CoA synthetase appears to be absent from the mitochondrial membrane but present in the peroxisomal membrane.  相似文献   

11.
Dicarboxylic acids are formed by omega-oxidation of fatty acids in the endoplasmic reticulum and degraded as the CoA ester via beta-oxidation in peroxisomes. Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids, implying that acyl-CoA thioesterases (ACOTs), which hydrolyze CoA esters to the free acid and CoASH, are needed for the release of the free acids. Recent studies show that peroxisomes contain several acyl-CoA thioesterases with different functions. We have now expressed a peroxisomal acyl-CoA thioesterase with a previously unknown function, ACOT4, which we show is active on dicarboxylyl-CoA esters. We also expressed ACOT8, another peroxisomal acyl-CoA thioesterase that was previously shown to hydrolyze a large variety of CoA esters. Acot4 and Acot8 are both strongly expressed in kidney and liver and are also target genes for the peroxisome proliferator-activated receptor alpha. Enzyme activity measurements with expressed ACOT4 and ACOT8 show that both enzymes hydrolyze CoA esters of dicarboxylic acids with high activity but with strikingly different specificities. Whereas ACOT4 mainly hydrolyzes succinyl-CoA, ACOT8 preferentially hydrolyzes longer dicarboxylyl-CoA esters (glutaryl-CoA, adipyl-CoA, suberyl-CoA, sebacyl-CoA, and dodecanedioyl-CoA). The identification of a highly specific succinyl-CoA thioesterase in peroxisomes strongly suggests that peroxisomal beta-oxidation of dicarboxylic acids leads to formation of succinate, at least under certain conditions, and that ACOT4 and ACOT8 are responsible for the termination of beta-oxidation of dicarboxylic acids of medium-chain length with the concomitant release of the corresponding free acids.  相似文献   

12.
Acute and chronic treatment with clofibrate increased the total CoA content of rat liver and altered the profile of the various CoA thioesters. There resulted a 2–3 fold increase in the contents of long chain acyl CoA, acetyl CoA and free CoA, contrasting with significant decreases found in succinyl CoA, malonyl CoA and acetoacetyl CoA contents. It is postulated that the known increase in fatty acid binding protein and/or the increased extramitochondrial β-oxidation of fat by an increased peroxisomal population may direct the compartmentation and metabolic fate of fatty acids and their CoA derivatives following clofibrate treatment.  相似文献   

13.
Polyunsaturated fatty acids (PUFAs) are known to inhibit cell proliferation of many tumour types both in vitro and in vivo. Their capacity to interfere with cell proliferation has been linked to their induction of reactive oxygen species (ROS) production in tumour tissues leading to cell death through apoptosis. However, the exact mechanisms of action of PUFAs are far from clear, particularly in brain tumours. The loss of bound hexokinase from the mitochondrial voltage-dependent anion channel has been directly related to loss of protection from apoptosis, and PUFAs can induce this loss of bound hexokinase in tumour cells. Tumour cells overexpressing Akt activity, including gliomas, are sensitised to ROS damage by the Akt protein and may be good targets for chemotherapeutic agents, which produce ROS, such as PUFAs. Cardiolipin peroxidation may be an initial event in the release of cytochrome c from the mitochondria, and enriching cardiolipin with PUFA acyl chains may lead to increased peroxidation and therefore an increase in apoptosis. A better understanding of the metabolism of fatty acids and eicosanoids in primary brain tumours such as gliomas and their influence on energy balance will be fundamental to the possible targeting of mitochondria in tumour treatment.  相似文献   

14.
In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signalling factor (DSF, 2(Z)‐11‐methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl‐CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl‐CoA ligase, Escherichia coli FadD, in the E. coli ß‐oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3‐hydroxyacyl‐acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl‐ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalysing uptake and activation of the free fatty acids to give acyl‐CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl‐ACP synthetase, replaced RpfB in counteracting the effects of high level RpfF thioesterase activity indicating that the essential role of RpfB is uptake and activation of free fatty acids.  相似文献   

15.
Extracts of avocado mesocarp rapidly desaturate stearyl-acyl carrier protein (ACP) to free oleic acid. In addition to stearyl-ACP desaturase activity, the extracts contained a very active acyl thioesterase. After this activity was separated by ammonium sulfate fractionation from stearyl-ACP desaturase, over 95% of the desaturase product (18:1) was recovered as 18:1-ACP. The thioesterase was much more active toward 18:1-ACP than toward the other acyl-ACPs and acyl-CoAs tested. Long chain acyl thioesterase activity was present in a variety of plant cells, photosynthetic as well as nonphotosynthetic. The possible role of acyl thioesterases in regulating plant biosynthetic reactions involving lipids is discussed.  相似文献   

16.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism.  相似文献   

17.
The purpose of this study was to investigate early biochemical changes and possible mechanisms via which alkyl(C12)thioacetic acid (CMTTD, blocked for beta-oxidation), alkyl(C12)thiopropionic acid (CETTD, undergo one cycle of beta-oxidation) and a 3-thiadicarboxylic acid (BCMTD, blocked for both omega- (and beta-oxidation) influence the peroxisomal beta-oxidation in liver of rats. Treatment of rats with CMTTD caused a stimulation of the palmitoyl-CoA synthetase activity accompanied with increased concentration of hepatic acid-insoluble CoA. This effect was already established during 12-24 h of feeding. From 2 days of feeding, the cellular level of acid-insoluble CoA began to decrease, whereas free CoASH content increased. Stimulation of [1-14C]palmitoyl-CoA oxidation in the presence of KCN, palmitoyl-CoA-dependent dehydrogenase (termed peroxisomal beta-oxidation) and palmitoyl-CoA hydrolase activities were revealed after 36-48 h of CMTTD-feeding. Administration of BCMTD affected the enzymatic activities and altered the distribution of CoA between acid-insoluble and free forms comparable to what was observed in CMTTD-treated rats. It is evident that treatment of peroxisome proliferators (BCMTD and CMTTD), the level of acyl-CoA esters and the enzyme activity involved in their formation precede the increase in peroxisomal and palmitoyl-CoA hydrolase activities. In CMTTD-fed animals the activity of cyanide-insensitive fatty acid oxidation remained unchanged when the mitochondrial beta-oxidation and carnitine palmitoyltransferase operated at maximum rates. The sequence and redistribution of CoA and enzyme changes were interpreted as support for the hypothesis that substrate supply is an important factor in the regulation of peroxisomal fatty acid metabolism, i.e., the fatty acyl-CoA species appear to be catabolized by peroxisomes at high rates only when uptake into mitochondria is saturated. Administration of CETTD led to an inhibition of mitochondrial fatty acid oxidation accompanied with a rise in the concentration of acyl-CoA esters in the liver. Consequently, fatty liver developed. The peroxisomal beta-oxidation was marginally affected. Whether inhibition of mitochondrial beta-oxidation may be involved in regulation of peroxisomal fatty acid metabolism and in development of fatty liver should be considered.  相似文献   

18.
The properties of acyl coenzyme A (CoA) synthetase activity were characterized in cultured rabbit coronary microvessel endothelial cells. We report here that microvessel endothelial cells contain two long-chain acyl CoA synthetases. One shows activity with a variety of fatty acids, similar to long-chain non-selective fatty acyl CoA synthetases described previously. The other activity was selective for arachidonic acid and other structurally related substrates. Both activities required ATP, Mg2+ and CoA for optimal activity. The arachidonyl CoA and the non-selective acyl CoA synthetases showed different thermolabilities. Arachidonyl CoA formation was inhibited by greater than 50% after 1 min at 45 degrees C, whereas a 15 min heating treatment was necessary to produce the same relative inhibition of oleoyl CoA synthesis. Glucocorticoid pretreatment (10(-7) M dexamethasone) of the RCME cells did not affect the apparent Km or Vmax, nor the fatty acid selectivity for either acyl CoA synthetase. Therefore, although fatty acyl CoA synthetases may be involved in limiting eicosanoid formation, these activities do not appear to be glucocorticoid-responsive.  相似文献   

19.
Joshi AK  Witkowski A  Berman HA  Zhang L  Smith S 《Biochemistry》2005,44(10):4100-4107
A natural linker of approximately 20 residues connects the acyl carrier protein with the carboxy-terminal thioesterase domain of the animal fatty acid synthase. This study examines the effects of changes in the length and amino acid composition of this linker on catalytic activity, product composition, and segmental motion of the thioesterase domain. Deletion of 10 residues, almost half of the interdomain linker, had no effect on either mobility of the thioesterase domain, estimated from fluorescence polarization of a pyrenebutyl methylphosphono moiety bound covalently to the active site serine residue, or functionality of the fatty acid synthase; further shortening of the linker limited mobility of the thioesterase domain and resulted in reduced fatty acid synthase activity and an increase in product chain length from 16 to 18 and 20 carbon atoms. Surprisingly, however, even when the entire linker region was deleted, the fatty acid synthase retained 28% activity. Lengthening of the linker, by insertion of an unusually long acyl carrier protein-thioesterase linker from a modular polyketide synthase, increased mobility of the thioesterase domain without having any significant effect on catalytic properties of the complex. Interdomain linkers could also be used to tether, to the acyl carrier protein domain of the fatty acid synthase, a thioesterase active toward shorter chain length acyl thioesters generating novel short-chain fatty acid synthases. These studies reveal that although truncation of the interdomain linker partially impacts the ability of the thioesterase domain to terminate growth of the acyl chain, the overall integrity of the fatty acid synthase is quite tolerant to moderate changes in linker length and flexibility. The retention of fatty acid synthesizing activity on deletion of the entire linker region implies that the inherent flexibility of the phosphopantetheine "swinging arm" also contributes significantly to the successful docking of the long-chain acyl moiety in the thioesterase active site.  相似文献   

20.
Mutants of Escherichia coli deficient in thioesterase II activity were isolated by taking advantage of the fact that thioesterase I specifically hydrolyzes long-chain (C12 to C18) acyl coenzyme A (CoA) esters but is unable to cleave the short-chain substrate decanoyl-CoA. One of these lesions (designated tesB1) reduces thioesterase II activity to about 10% of the normal level. The mutant enzyme activity was abnormally labile to temperature, but it was normal in all the other characteristics examined (pH optimum, Km for decanoyl-CoA, molecular weight). The level of thioesterase I activity was unaffected by the tesB1 lesion. The tesB locus was mapped with a closely linked Tn10 insertion. tesB was mapped to minute 10 of the E. coli linkage map, close to the lon locus. The clockwise gene order is lon tesB acrA dnaZ. The tesB mutation is recessive. We found no phenotype for the mutation. The fatty acid compositions of the phospholipids, lipid A, and lipoprotein components are normal in thioesterase II mutants. These data show that thioesterases I and II of E. coli are encoded by different genetic loci and strongly suggest that tesB is the structural gene for thioesterase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号