首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A four-component, diffusion-reaction model with double Michaelis-Menten kinetics was used to describe the experimental data obtained from a laboratory biofilm, fluidized-bed nitrification reactor. Theory and experiment demonstrated that the stoichiometric ratio (3.5 mg O(2)/mg NH(4) (+)-N) can be employed as a criterion to determine whether the limiting substrate is oxygen or ammonia. For the present work, in the range of concentrations where limitation occurred, 4 mg/L NH(4) (+)-N and 14 mg/L O(2), the ratio of oxygen to ammonia in the bulk liquid determined which substrate was penetration-limiting-O(2) if <3.5 and NH(4) (+) if > 3.5. Halforder kinetics with respect to the limiting substrate described the apparent overall rates. Simulations provided biofilm concentration profiles which demonstrated the role of the oxygen-ammonia ratio. Experiments indicated that, generally, high NO(2) (-) concentrations can be expected. These depend on the residence time, biofilm area, and oxygen concentration. This dependency was investigated with the model, as was the parametric sensitivity with respect to the saturation constants. Particularly important for the NO(2) (-) levels were the ratios of the saturation constants for oxygen.  相似文献   

2.
A multi-population biofilm model for completely autotrophic nitrogen removal was developed and implemented in the simulation program AQUASIM to corroborate the concept of a redox-stratification controlled biofilm (ReSCoBi). The model considers both counter- and co-diffusion biofilm geometries. In the counter-diffusion biofilm, oxygen is supplied through a gas-permeable membrane that supports the biofilm while ammonia (NH(4)(+)) is supplied from the bulk liquid. On the contrary, in the co-diffusion biofilm, both oxygen and NH(4)(+) are supplied from the bulk liquid. Results of the model revealed a clear stratification of microbial activities in both of the biofilms, the resulting chemical profiles, and the obvious effect of the relative surface loadings of oxygen and NH(4)(+) (J(O(2))/J(NH(4)(+))) on the reactor performances. Steady-state biofilm thickness had a significant but different effect on T-N removal for co- and counter-diffusion biofilms: the removal efficiency in the counter-diffusion biofilm geometry was superior to that in the co-diffusion counterpart, within the range of 450-1,400 microm; however, the efficiency deteriorated with a further increase in biofilm thickness, probably because of diffusion limitation of NH(4)(+). Under conditions of oxygen excess (J(O(2))/J(NH(4)(+)) > 3.98), almost all NH(4)(+) was consumed by aerobic ammonia oxidation in the co-diffusion biofilm, leading to poor performance, while in the counter-diffusion biofilm, T-N removal efficiency was maintained because of the physical location of anaerobic ammonium oxidizers near the bulk liquid. These results clearly reveal that counter-diffusion biofilms have a wider application range for autotrophic T-N removal than co-diffusion biofilms.  相似文献   

3.
In this study, the effects of sludge retention time (SRT) on NH(4)-N oxidation and NO(x)-N accumulation in the nitritation reactors were studied. The gradually decrease of SRT also caused long reaction time to achieve 99% NH(4)-N removal. Although the target NH(4)-N removal was achieved in a short reaction time at 40 days of SRT, decreasing of SRT from 40 to 30, 25, 20 days, increase the reaction time from 168 to 240 and 265 h, respectively. The inlet NH(4)-N was almost oxidized and the concentration of NO(2)-N accumulated to a high level of 177 mg/l, while NO(2)-N/(NO(3)-N+NO(2)-N) ratio was about 0.9 at SRT of 40 days. However, the concentration of NO(3)-N increased slightly and NO(2)-N/(NO(x)-N) ratio dropped to 0.8 when the SRT was lower than 40 days. During the operation in a cycle, free ammonia concentration in the SBR was decreased from 2.8 to 0.7 mg/l which is below the lowest concentration causing inhibition of nitrite oxidizing bacteria (NOB). It was assumed that combined dissolved oxygen limitation and NH(3)-N inhibition on NOB caused NO(2)-N accumulation under the experimental conditions.  相似文献   

4.
The disruption of K(+) transport and accumulation is symptomatic of NH(4)(+) toxicity in plants. In this study, the influence of K(+) supply (0.02-40 mM) and nitrogen source (10 mM NH(4)(+) or NO(3)(-)) on root plasma membrane K(+) fluxes and cytosolic K(+) pools, plant growth, and whole-plant K(+) distribution in the NH(4)(+)-tolerant plant species rice (Oryza sativa L.) was examined. Using the radiotracer (42)K(+), tissue mineral analysis, and growth data, it is shown that rice is affected by NH(4)(+) toxicity under high-affinity K(+) transport conditions. Substantial recovery of growth was seen as [K(+)](ext) was increased from 0.02 mM to 0.1 mM, and, at 1.5 mM, growth was superior on NH(4)(+). Growth recovery at these concentrations was accompanied by greater influx of K(+) into root cells, translocation of K(+) to the shoot, and tissue K(+). Elevating the K(+) supply also resulted in a significant reduction of NH(4)(+) influx, as measured by (13)N radiotracing. In the low-affinity K(+) transport range, NH(4)(+) stimulated K(+) influx relative to NO(3)(-) controls. It is concluded that rice, despite its well-known tolerance to NH(4)(+), nevertheless displays considerable growth suppression and disruption of K(+) homeostasis under this N regime at low [K(+)](ext), but displays efficient recovery from NH(4)(+) inhibition, and indeed a stimulation of K(+) acquisition, when [K(+)](ext) is increased in the presence of NH(4)(+).  相似文献   

5.
Wastewaters from textile processing and dye-stuff manufacture industries contain substantial amounts of salts in addition to azo dye residues. To examine salinity effects on dye-degrading bacteria, a study was carried out with four azo dyes in the presence of varying concentrations of NaCl (0-100 g l(-1)) with a previously isolated bacterium, Shewanella putrefaciens strain AS96. Under static, low oxygen conditions, the bacterium decolorized 100 mg dye l(-1) at salt concentrations up to 60 g NaCl l(-1). There was an inverse relationship between the velocity of the decolorization reaction and salt concentration over the range between 5 and 60 g NaCl l(-1) and at dye concentrations between 100 and 500 mg l(-1). The addition of either glucose (C source) or NH(4)NO(3) (N source) to the medium strongly inhibited the decolorization process, while yeast extract (4 g l(-1)) and Ca(H(2)PO(4))(2).H(2)O (1 g l(-1)) both enhanced decolorization rates. High-performance liquid chromatography analysis demonstrated the presence of 1-amino-2-naphthol, sulfanilic acid and nitroaniline as the major metabolic products of the azo dyes, which could be further degraded by a shift to aerobic conditions. These findings show that Shewanella could be effective for the treatment of dye-containing industrial effluents containing high concentrations of salt.  相似文献   

6.
红豆草与土壤氮含量对大气二氧化碳浓度升高的响应   总被引:1,自引:0,他引:1  
在封闭的植物培养箱中,通过盆栽实验,研究了红豆草和土壤氮含量对CO2浓度增加的响应.结果表明,与正常CO2浓度(355~370 μmol·mol-1)相比,CO2浓度升高(700 μmol·mol-1),植物生物量增加25.1%(P<0.01),但植物体氮浓度降低25.3%(P<0.001),植物全氮没有显著的变化.经3个月盆栽实验后,与原始土壤相比,两种CO2浓度处理土壤全N、NO3--N和NH4+-N都有所降低,而土壤微生物氮则显著增加,这可能与植物生长有关.不同CO2浓度处理土壤NH4+-N浓度基本一致,但在高CO2浓度下,土壤NO3--N浓度显著降低,而微生物生物氮显著增加.对整个土壤-植物系统而言,盆栽实验后,整个系统全氮有少量增加,但变化不显著,特别是在高CO2浓度条件下,土壤-植物系统全氮最大,这可能与培养材料红豆草为豆科植物,而且在高CO2浓度下生物量增加,导致氮的固定量增加有关.  相似文献   

7.
Diffusion and reaction of nitric oxide in suspension cell cultures.   总被引:3,自引:0,他引:3       下载免费PDF全文
B Chen  M Keshive    W M Deen 《Biophysical journal》1998,75(2):745-754
A reaction-diffusion model was developed to predict the fate of nitric oxide (NO) released by cells of the immune system. The model was used to analyze data obtained previously using macrophages attached to microcarrier beads suspended in a stirred vessel. Activated macrophages synthesize NO, which is oxidized in the culture medium by molecular oxygen and superoxide (O2-, also released by the cells), yielding mainly nitrite (NO2-) and nitrate (NO3-) as the respective end products. In the analysis the reactor was divided into a "stagnant film" with position-dependent concentrations adjacent to a representative carrier bead and a well-mixed bulk solution. It was found that the concentration of NO was relatively uniform in the film. In contrast, essentially all of the O2- was calculated to be consumed within approximately 2 microm of the cell surfaces, due to its reaction with NO to yield peroxynitrite. The decomposition of peroxynitrite caused its concentration to fall to nearly zero over a distance of approximately 30 microm from the cells. Although the film regions (which had an effective thickness of 63 microm) comprised just 2% of the reactor volume and were predicted to account for only 6% of the NO2- formation under control conditions, they were calculated to be responsible for 99% of the NO3- formation. Superoxide dismutase in the medium (at 3.2 microM) was predicted to lower the ratio of NO3- to NO2- formation rates from near unity to <0.5, in reasonable agreement with the data. The NO3-/NO2- ratio was predicted to vary exponentially with the ratio of O2- to NO release rates from the cells. Recently reported reactions involving CO2 and bicarbonate were found to have important effects on the concentrations of peroxynitrite and nitrous anhydride, two of the compounds that have been implicated in NO cytotoxicity and mutagenesis.  相似文献   

8.
有机酸去除污泥重金属前后硝态氮和铵态氮浓度变化   总被引:1,自引:0,他引:1  
研究了柠檬酸、草酸和乙酸溶液对污泥中重金属(Cd、Pb、Cu和Zn)的去除效果,以及处理前后析出液和污泥中硝态氮和铵态氮的浓度变化.结果表明,0.8mol.L-1柠檬酸溶液可去除污泥中76.0%的Pb和92.5%的Zn,是较好的重金属去除剂.污泥经有机酸处理后,有大量的硝态氮和铵态氮溶解于析出液中,与加入蒸馏水的对照处理相比,有机酸可大幅度增加析出液中铵态氮的含量,减少硝态氮含量.由于污泥处理过程中有其他形态的氮的转化,处理后污泥中仍含有较高浓度的硝态氮和铵态氮.0.5mol.L-1草酸处理的析出液中硝态氮和铵态氮浓度分别为2.8和888.1mg.L-1,且重金属含量不高,可作为较好的液体肥料进行回收利用.  相似文献   

9.
Effects of nitrite and ammonium on methane-dependent denitrification   总被引:1,自引:0,他引:1  
For effective application of methane-dependent denitrification (MDD) in the treatment of wastewater containing NO(2)(-) or NH(4)(+), the effect of these inorganic nitrogen compounds on MDD activity needs to be clarified. The MDD activity of sludge acclimatized with CH(4) and O(2) was determined with mineral media of different nitrogen-compound compositions in the presence of 0.21 atm CH(4) and 0.20 atm O(2). Incubations with media containing only NO(2)(-) or two of the three inorganic nitrogen compounds (NO(3)(-)+NO(2)(-), NO(2)(-)+NH(4)(+) or NH(4)(+)+NO(3)(-)) resulted in MDD activity equal to or higher than that with media containing only NO(3)(-). However, there was no MDD activity in media containing NO(2)(-) at 10 degrees C, probably because of serious inhibition of NO(2)(-) on methane oxidation. MDD occurred in media containing only NH(4)(+), although the total nitrogen removal efficiency was very low. These results show that NO(2)(-) and NH(4)(+), in the presence of NO(x)(-), do not inhibit but rather promote MDD. Consequently, NH(4)(+) does not need to be completely oxidized to NO(3)(-) in the nitrification reactor before MDD. However, under psychrophilic conditions, NO(2)(-) seriously inhibited MDD. Therefore, the nitrification reactor must not discharge effluent containing NO(2)(-) under psychrophilic conditions.  相似文献   

10.
上海地区大气氮湿沉降及其对湿地水环境的影响   总被引:28,自引:0,他引:28  
张修峰 《应用生态学报》2006,17(6):1099-1102
根据1998~2003年上海地区雨水中NO3--N、NH4+-N浓度,采用单因子评估模式评价了降雨对湿地水环境的影响,并结合降雨量数据,研究了大气湿沉降氮通量.结果表明,上海地区雨水中氮浓度较高,6年雨水平均硝态氮浓度为259 mg·L-1,铵态氮浓度为2.16 mg·L-1,总无机氮(TIN)浓度474 mg·L-1,远大于水体富营养水中氮浓度阀值(0.2 mg·L-1),依据降水中的氮浓度,降水已达到地表水V类、劣V类水平.6年湿沉降氮通量平均值为58.1 kg·hm-2·yr-1,其中NO3--N占54%.大气氮沉降对湿地水体富营养化影响值得关注.  相似文献   

11.
An experiment was designed to resolve two largely unaddressed questions about the turnover of N in soils. One is the influence of microbial growth rate on mobilization and remineralization of cellular N. The other is to what extent heterotrophic immobilization of NO(3)(-) is controlled by the soil concentration of NH(4)(+). Bacteria were extracted from a deciduous forest soil and inoculated into an aqueous medium. Various N pool dilution/enrichment experiments were carried out to: (1) calculate the gross N immobilization and remineralization rates; (2) investigate their dependence on NH(4)(+)and NO(3)(-) concentrations; (3) establish the microbial preference for NH(4)(+)and NO(3)(-) depending on the NH(4)(+)/NO(3)(-) concentration ratio. Remineralization of microbial N occurred mainly at high growth rates and NH(4)(+) concentrations. There was a positive correlation between NH(4)(+) immobilization and remineralization rates, and intracellular recycling of N seemed to be an efficient way for bacteria to withstand low inorganic N concentrations. Thus, extensive remineralization of microbial N is likely to occur only when environmental conditions promote high growth rates. The results support previous observations of high NO(3)(-) immobilization rates, especially at low NH(4)(+) concentrations, but NO(3)(-) was also immobilized at high NH(4) concentrations. The latter can be understood if part of the microbial community has a preference for NO(3)(-) over NH(4)(+).  相似文献   

12.
The redox control bioreactor (RCB) is a new hollow fiber membrane bioreactor (HFMBR) design in which oxygen and hydrogen gases are provided simultaneously through separate arrays of juxtaposed hollow fiber (HF) membranes. This study applied the RCB for completely autotrophic conversion of ammonia to N(2) through nitrification with O(2) and denitrification using hydrogen as an electron donor (i.e., autohydrogentrophic denitrification). The hypothesis of this research was that efficient biofilm utilization of O(2) and H(2) at respective HFs would limit transport of these gases to bulk fluid, thereby enabling completely autotrophic ammonia conversion to N(2) through the co-occurrence of ammonia oxidation (O(2)-HF biofilms) and autohydrogenotrophic denitrification (H(2)-HF biofilms). A prototype RCB was fabricated and operated for 215 days on a synthetic, organic-free feedstream containing 217 mg L(-1) NH(4)(+)-N. When O(2) and H(2) were simultaneously supplied, the RCB achieved a steady NH(4)(+)-N removal flux of 5.8 g m(-2) day(-1) normalized to O(2)-HF surface area with a concomitant removal flux of 4.4 g m(-2) day(-1) (NO(3)(-))+NO(2)(-))-N based on H(2)-HF surface area. The significance of H(2) supply was confirmed by an increase in effluent NO(3)(-)-N when H(2) supply was discontinued and a decline in NO(3)(-)-N when H(2) supply was restarted. Increases in H(2) pressure caused decreased ammonia utilization, suggesting that excess H(2) interfered with nitrification. Microprobe profiling across radial transects revealed significant gradients in dissolved O(2) on spatial scales of 1 mm or less. Physiological and molecular analysis of biofilms confirmed that structurally and functionally distinct biofilms developed on adjacent, juxtaposed fibers.  相似文献   

13.
【背景】低碳氮比生活污水很难达标处理,多级A/O工艺、生物强化技术及生物膜技术的有机结合可有效解决这一问题。【目的】开发出一种泥膜共生多级A/O工艺并进行中试研究,驯化出高效脱氮除磷菌剂并对系统进行生物强化。【方法】通过测定中试设备出水及污水处理厂出水化学需氧量(Chemical oxygen demand,COD)、氨氮(NH_4~+-N)、硝氮(NO_3~--N)、总氮(Total nitrogen,TN)、总磷(Total phosphorus,TP)对比分析两种工艺的污染物去除效能,利用高通量测序技术对比生物强化技术对系统微生物群落结构的影响。【结果】中试设备对COD、NH_4~+-N、NO_3~--N、TN、TP的去除效果均优于污水处理厂的处理工艺;驯化的低温好氧反硝化菌TN去除率最大值可达84.21%,驯化的低温反硝化聚磷菌群对磷的去除率最高可达85.75%;利用驯化菌群对中试设备进行生物强化后较好地改善了系统NH_4~+-N、NO_3~--N、TN、TP的去除效果;经生物强化后,具有好氧反硝化和反硝化聚磷功能的Pseudomonas菌群明显增多。【结论】泥膜共生多级A/O工艺对于低碳氮比生活污水的处理具有很好的效果,利用生物强化技术可有效提高低温条件下系统污染物去除效能。  相似文献   

14.
太湖地区氮素湿沉降动态及生态学意义:以常熟生态站为例   总被引:26,自引:1,他引:26  
在常熟生态站2001年6月至2003年5月连续两年定位收集湿沉降,对太湖地区氮素湿沉降动态进行研究.结果表明,湿沉降氮输入量季节变化显著,夏、春季高,秋、冬季低.在湿沉降输入氮中NH4^+-N、NO3^--N和DON的比例分别为47.6%、35.1%和17.4%.湿沉降中NH4^+-N主要来自当地农田的氨挥发,湿沉降NH4^+-N月输入量随月降雨量增加而增加(R0=0.3178^**).该地区空气中NO3^--N浓度相对比较稳定,湿沉降中NO3^--N浓度与降雨量呈负相关(R^2=0.4205^***).湿沉降NO33^--N月输入量与月降雨次数呈直线正相关(R^2=0.6757***),而与月降雨量相关性较差(R^2=0.1985^*).湿沉降TN年输入量为27.0kg·hm^-2,并在所有降雨中,氮浓度均超过水体富营养化阈值(0.2mg·L^-1).  相似文献   

15.
Elucidating the reaction of nitric oxide (NO) with oxyhemoglobin [HbFe(II)O2] is critical to understanding the metabolic fate of NO in the vasculature. At low concentrations of NO, methemoglobin [HbFe(III)] is the only detectable product from this reaction; however, locally high concentrations of NO have been demonstrated to result in some iron-nitrosylhemoglobin [HbFe(II)NO] and S-nitrosohemoglobin (SNO-Hb) formation. Reductive nitrosylation through a HbFe(III) intermediate was proposed as a viable pathway under such conditions. Here, we explore another potential mechanism based on mixed valenced Hb tetramers. The oxidation of one or two heme Fe(II) in the R-state HbFe(II)O2 has been observed to lower the oxygen affinity of the remaining heme groups, thus creating the possibility of oxygen release and NO binding at the heme Fe(II) sites. This mixed valenced hypothesis requires an allosteric transition of the Hb tetramer. Hence, this hypothesis can account for HbFe(II)NO formation, but not SNO-Hb formation. Here, we demonstrate that cyanide attenuated the formation of SNO-Hb by 30-40% when a saturated NO bolus was added to 0.1-1.0 mM HbFe(II)O2 solutions. In addition, HbFe(II)NO formation under such inhomogeneous conditions does not require allostericity. Therefore, we concluded that the mixed valenced theory does not play a major role under these conditions, and reductive nitrosylation accounts for a significant fraction of the HbFe(II)NO formed and approximately 30-40% of SNO-Hb. The remaining SNO-Hb is likely formed from NO oxidation products.  相似文献   

16.
The regulation of ammonium translocation in plants   总被引:9,自引:0,他引:9  
Much controversy exists about whether or not NH(+)(4) is translocated in the xylem from roots to shoots. In this paper it is shown that such translocation can indeed take place, but that interference from other metabolites such as amino acids and amines may give rise to large uncertainties about the magnitude of xylem NH(+)(4) concentrations. Elimination of interference requires sample stabilization by, for instance, formic acid or methanol. Subsequent quantification of NH(+)(4) should be done by the OPA-fluorometric method at neutral pH with 2-mercaptoethanol as the reducing agent since this method is sensitive and reliable. Colorimetric methods based on the Berthelot reaction should never be used, as they are prone to give erroneous results. Significant concentrations of NH(+)(4), exceeding 1 mM, were measured in both xylem sap and leaf apoplastic solution of oilseed rape and tomato plants growing with NO(-)(3) as the sole N source. When NO(-)(3) was replaced by NH(+)(4), xylem sap NH(+)(4) concentrations increased with increasing external concentrations and with time of exposure to NH(+)(4). Up to 11% of the translocated N was constituted by NH(+)(4). Glutamine synthetase (GS) incorporates NH(+)(4) into glutamine, but root GS activity and expression were repressed when high levels of NH(+)(4) were supplied. Ammonium concentrations measured in xylem sap sampled just above the stem base were highly correlated with NH(+)(4) concentrations in apoplastic solution from the leaves. Young leaves tended to have higher apoplastic NH(+)(4) concentrations than older non-senescing leaves. The flux of NH(+)(4) (concentration multiplied by transpirational water flow) increased with temperature despite a decline in xylem NH(+)(4) concentration. Retrieval of leaf apoplastic NH(+)(4) involves both high and low affinity transporters in the plasma membrane of mesophyll cells. Current knowledge about these transporters and their regulation is discussed.  相似文献   

17.
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001. The reactors were supplemented with carbon (glucose), nitrogen (NH(4)Cl), phosphorus (KH(2)PO(4)), or combined nutrients (CNP), with or without hexadecane. The impact of these treatments on nitrification and on the exopolysaccharide composition of river biofilms was determined. The results showed that the biofilms had higher NH4(+) oxidation, NO3(-) production, and N2O production activities in fall 1999 than fall 2001 when grown with CNP but had higher activities in fall 2001 than fall 1999 when grown with individual nutrients. The exopolysaccharide amounts and proportions were generally higher in fall 1999 than fall 2001, as a consequence of the higher nutrient levels in the river water in the first year of this study. The addition of P and especially CNP stimulated NH4(+) oxidation by the biofilms, showing a P limitation in this river ecosystem. The presence of hexadecane negatively affected these activities and lowered the amounts of exopolysaccharides in CNP and P biofilms in fall 1999 but increased the biofilm activities and exopolysaccharide amounts in CNP biofilm in fall 2001. Antagonistic, synergistic, and independent effects between nutrients and hexadecane were also observed. This study demonstrated that the biofilm autotrophic nitrification activity in the South Saskatchewan River was limited by P, that this activity and the exopolysaccharide amounts and proportions were dependent on the nutrient concentrations in the river water, and suggested that exopolysaccharides may play a protective role for biofilm microorganisms against toxic pollutants.  相似文献   

18.
Plant-atmosphere NH(3) exchange was studied in white clover (Trifolium repens L. cv. Seminole) growing in nutrient solution containing 0 (N(2) based), 0.5 (low N) or 4.5 (high N) mM NO(3)(-). The aim was to show whether the NH(3) exchange potential is influenced by the proportion of N(2) fixation relative to NO(3)(-) supply. During the treatment, inhibition of N(2) fixation by NO(3)(-) was followed by in situ determination of total nitrogenase activity (TNA), and stomatal NH(3) compensation points (chi(NH(3))) were calculated on the basis of apoplastic NH4(+) concentration ([NH4(+)]) and pH. Whole-plant NH(3) exchange, transpiration and net CO(2) exchange were continuously recorded with a controlled cuvette system. Although shoot total N concentration increased with the level of mineral N application, tissue and apoplastic [NH4(+)] as well as chi(NH(3)) were equal in the three treatments. In NH(3)-free air, net NH(3) emission rates of <1 nmol m(-2) s(-1) were observed in both high-N and N(2)-based plants. When plants were supplied with air containing 40 nmol mol(-1) NH(3), the resulting net NH(3) uptake was higher in plants which acquired N exclusively from symbiotic N(2) fixation, compared to NO(3)(-) grown plants. The results indicate that symbiotic N(2) fixation and mineral N acquisition in white clover are balanced with respect to the NH4(+) pool leading to equal chi(NH(3)) in plants growing with or without NO(3)(-). At atmospheric NH(3) concentrations exceeding chi(NH(3)), the NH(3) uptake rate is controlled by the N demand of the plants.  相似文献   

19.
The control of nitrogenase recovery from inactivation by oxygen was studied in Anabaena sp. strain CA (ATCC 33047). Nitrogenase activity (acetylene reduction) in cultures grown in 1% CO2 in air was inhibited by exposure to 1% CO2-99% O2 and allowed to recover in the presence of high oxygen tensions. Cultures exposed to hyperbaric levels of oxygen in the presence of 10 mM NH4NO3 were incapable of regaining nitrogenase activity, whereas control cultures returned to 65 to 80% of their original activity within about 3 h after exposure to high oxygen tension. In contrast to the regulation of heterocyst differentiation and nitrogenase synthesis, recovery from oxygen inactivation in this organism was shown to be under the control of NH4+ rather than NO3-.  相似文献   

20.
An experiment was conducted in a saturated sand column with three bacterial strains that have different growth characteristics on toluene, Pseudomonas putida F1 which degrades toluene only under aerobic conditions, Thauera aromatica T1 which degrades toluene only under denitrifying conditions, and Ralstonia pickettii PKO1 has a facultative nature and can perform nitrate-enhanced biodegradation of toluene under hypoxic conditions (DO <2 mg/L). Steady-state concentration profiles showed that oxygen and nitrate appeared to be utilized simultaneously, regardless of the dissolved oxygen concentration and the results from fluorescent in-situ hybridization (FISH) indicated that PKO1 maintained stable cells numbers throughout the column, even when the pore water oxygen concentration was high. Since PKO1's growth rate under aerobic condition is much lower than that of F1, except under hypoxic conditions, these observations were not anticipated. Therefore these observations require a mechanistic explanation that can account for localized low oxygen concentrations under aerobic conditions. To simulate the observed dynamics, a multispecies biofilm model was implemented. This model formulation assumes the formation of a thin biofilm that is composed of the three bacterial strains. The individual strains grow in response to the substrate and electron acceptor flux from bulk fluid into the biofilm. The model was implemented such that internal changes in bacterial composition and substrate concentration can be simulated over time and space. The model simulations from oxic to denitrifying conditions compared well to the experimental profiles of the chemical species and the bacterial strains, indicating the importance of accounting for the biological activity of individual strains in biofilms that span different redox conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号