首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathogenic bacterium Brucella abortus codes for a multi-domain dimeric cytoplasmic histidine kinase called LOV-HK, which is a key blue light-activated virulence factor in this microorganism. The structural basis of the light activation mechanism of this protein remains unclear. In this work, full-length LOV-HK was cloned, expressed and purified. The protein was activated by light and crystallized under a controlled illumination environment. The merge of 14 individual native data sets collected on a single crystal resulted in a complete X-ray diffraction data set to a resolution of 3.70 Å with over 2 million reflections. Crystals belong to space group P212121, with unit-cell parameters a = 95.96, b = 105.30, c = 164.49 Å with a dimer in the asymmetric unit. Molecular replacement with Phaser using the individual domains as search models allowed for the reconstruction of almost the whole protein. Very recently, improved LOV-HK crystals led to a 3.25-Å resolution dataset. Refinement and model building is underway. This crystal model will represent one of the very few examples of a multi-domain histidine kinase with known structure.  相似文献   

2.
Dual-histidine kinases (HKs) are complex hybrid HKs containing in a single polypeptide two HK transmitter modules (T) and two-response regulator received domains (R) that are combined in a TRTR geometry. In fungi, this protein family is limited to some particular species of the phylum Basidiomycota and absent in the other phyla. This study extends the investigation of dual-HKs to 80 fully sequenced genomes of basidiomycetes, analyzing their distribution, domain architecture and phylogenetic relationships. Moreover, similarly to dual-HKs of basidiomycetes, several species of bacteria were found that contain hybrid HKs with a TRTR domain architecture encoded in a single gene.  相似文献   

3.
Two-component systems (TCSs) are the major signalling pathway in bacteria and represent potential drug targets. Among the 11 paired TCS proteins present in Mycobacterium tuberculosis H37Rv, the histidine kinases (HKs) Rv0600c (HK1) and Rv0601c (HK2) are annotated to phosphorylate one response regulator (RR) Rv0602c (TcrA). We wanted to establish the sequence-structure-function relationship to elucidate the mechanism of phosphotransfer using in silico methods. Sequence alignments and codon usage analysis showed that the two domains encoded by a single gene in homologous HKs have been separated into individual open-reading frames in M. tuberculosis. This is the first example where two incomplete HKs are involved in phosphorylating a single RR. The model shows that HK2 is a unique histidine phosphotransfer (HPt)-mono-domain protein, not found as lone protein in other bacteria. The secondary structure of HKs was confirmed using "far-UV" circular dichroism study of purified proteins. We propose that HK1 phosphorylates HK2 at the conserved H131 and the phosphoryl group is then transferred to D73 of TcrA.  相似文献   

4.
5.
6.
7.
A two-component system encoding gene cluster kvgAS that is present only in virulent Klebsiella pneumoniae CG43 was isolated and its sequence determined. RT-PCR and Southern analysis demonstrated that kvgAS is organized as an operon. No apparent effect of a kvgS deletion on bacterial virulence was observed in a mouse peritonitis model. In the presence of paraquat or 2,2-dipyridyl, the activity of kvgAS promoter in the kvgS mutant was found to be reduced to half of the level in the wild-type strain. The data suggest that the KvgAS system is autoregulated and plays a role in countering free radical stresses and sensing iron-limiting conditions.  相似文献   

8.
Many recombinant proteins carry an oligohistidine (His(X))-tag that allows their purification by immobilized metal affinity chromatography (IMAC). This tag can be exploited for the site-specific attachment of chromophores and fluorophores, using the same metal ion-nitrilotriacetic acid (NTA) coordination chemistry that forms the basis of popular versions of IMAC. Labeling proteins in this way can allow their detection at wavelengths outside of the absorption envelopes of un-modified proteins and nucleic acids. Here we describe use of this technology in tracer sedimentation experiments that can be performed in a standard analytical ultracentrifuge equipped with absorbance or fluorescence optics. Examples include sedimentation velocity in the presence of low molecular weight chromophoric solutes, sedimentation equilibrium in the presence of high concentrations of background protein and selective labeling to simplify the assignment of species in a complex interacting mixture.  相似文献   

9.
Anabaena sp. PCC 7120 is a cyanobacterium capable of performing several important biological functions: photosynthesis, nitrogen fixation, cell differentiation, cell-cell communication, etc. These activities require an extensive signaling capability in order to respond to the changing environment. Based on the genomic data, we have retrieved several gene families encoding signaling components. It is estimated that 211 genes encode two-component signaling elements, and 66 genes encode Ser/Thr kinases and phosphatases. These genes together represent 4.2% of the coding capacity of the whole genome, making Anabaena PCC 7120 a leading member among prokaryotes in terms of its signaling potential. It is known that two-component systems are composed of a few basic modules that can arrange into different structures best adapted for each signaling system. Many proteins in Anabaena PCC 7120 have incorporated both modules of two-component systems and catalytic domains of either Ser/Thr kinases or phosphatases. A family of 13 genes encode proteins with both a Ser/Thr kinase domain and a His kinase domain, and another four genes were also found whose products have both a response regulator domain and a Ser/Thr phosphatase domain. Of all the signaling proteins in Anabaena PCC 7120, about one third (35%) are conserved in the genome of the unicellular cyanobacterium strain Synechocystis sp. PCC 6803. Interestingly, one subfamily of His kinases and two subfamilies of response regulators are found in Anabaena PCC 7120 but are absent in Synechocystis PCC 6803. This study constitutes a basis for analyses of signal transduction in Anabaena PCC 7120 using functional genomic approaches.  相似文献   

10.
Phytochrome is a ubiquitous photoreceptor of plants and is encoded by a small multigene family. We have shown recently that a functional nuclear localization signal may reside within the COOH-terminal region of a major member of the family, phytochrome B (phyB) (Sakamoto, K., and A. Nagatani. 1996. Plant J. 10:859-868). In the present study, a fusion protein consisting of full-length phyB and the green fluorescent protein (GFP) was overexpressed in the phyB mutant of Arabidopsis to examine subcellular localization of phyB in intact tissues. The resulting transgenic lines exhibited pleiotropic phenotypes reported previously for phyB overexpressing plants, suggesting that the fusion protein is biologically active. Immunoblot analysis with anti-phyB and anti-GFP monoclonal antibodies confirmed that the fusion protein accumulated to high levels in these lines. Fluorescence microscopy of the seedlings revealed that the phyB-GFP fusion protein was localized to the nucleus in light grown tissues. Interestingly, the fusion protein formed speckles in the nucleus. Analysis of confocal optical sections confirmed that the speckles were distributed within the nucleus. In contrast, phyB-GFP fluorescence was observed throughout the cell in dark-grown seedlings. Therefore, phyB translocates to specific sites within the nucleus upon photoreceptor activation.  相似文献   

11.
12.
A method of semiempirical identification of structural domains is proposed. The procedure is based on the comparison of amino acid sequences in groups of homologous proteins. This approach was tested using 32 known protein sequences from different cytochromeb 5, cytochromec, lysozyme, hemoglobin, and myoglobin proteins. The method presented was able to identify all structural domains of these reference proteins. A consensus secondary structure provided information on structural content of these domains predicting correctly 21 of 23 (91%) of -helices. We applied this method to six homologous phytochrome sequences fromAvena, Arabadopsis, Cucurbita, Maize, Oryza, andPisum. Some of the identified domains can be assigned to the known tertiary structure categories. For example, an / domain is localized in the region known to stabilize the phytochrome chromophore in the red light absorbing form (Pr). One -helical and one / domains are localized in regions important for the chromophore stabilization in the far-red absorbing form (Pfr). From an analysis of noncovalent interaction patterns in another domain it is proposed that a phytochrome dimer contact involves two segments localized between residues 730 and 821 (using numbering of aligned sequences). Also, a possible antiparallel -sheet structure of this region has been suggested. According to this model, the long axis of the interacting structures is perpendicular to a twofold symmetry axis of the phytochrome dimer.  相似文献   

13.
MUC1 is an integral membrane protein expressed on the apical surface of epithelial cells where it acts as a signaling receptor. Its cytoplasmic tail (CT) contains seven, highly conserved tyrosine residues, some of which are constitutively phosphorylated and serve as recognition sites for SH2 domain proteins involved in intracellular signal transduction. However, no studies have determined which MUC1 tyrosines are phosphorylated or which signaling pathways are activated in response to stimulation of its ectodomain. In this report, we used our previously characterized CD8/MUC1 chimeric protein that is tyrosine phosphorylated on the MUC1 CT in response to extracellular treatment with CD8 antibody and performed site-directed mutagenesis of all seven tyrosines, both individually and in multiple combinations, to identify the particular sites of stimulated phosphorylation. We observed four phosphorylation sites, three present in sequence motifs with known signaling potential (Y(20), Y(46), and Y(60)) and one previously uncharacterized (Y(29)). These results are discussed in the context of the role of MUC1 in signal transduction.  相似文献   

14.
C. Schuster  R. Oelmüller  H. Mohr 《Planta》1987,171(1):136-143
Application of nitrate leads to an induction of nitrate reductase (NR; EC 1.6.6.1) and nitrite reductase (NIR; EC 1.7.7.1) in the cotyledons of dark-grown mustard (Sinapis alba L.) seedlings, and this induction can strongly be promoted by a far-red-light pretreatment — operating through phytochrome — prior to nitrate application. This light treatment is almost ineffective — as far as enzyme appearance is concerned — if no nitrate is given. When nitrate is applied, the stored light signal potentiates the appearance of NR and NIR in darkness, even in the absence of active phytochrome, to the same extent as continuous far-red light. This action of previously stored light signal lasts for approx. 12 h.Storage of the light signal was measured for NR and NIR. The process shows enzyme-specific differences. Storage occurs in the absence as well as in the presence of nitrate, i.e. irrespective of whether or not enzyme synthesis takes place. The kinetics of signal transduction and signal storage indicate that the formation and action of the stored signal are a bypass to the process of direct signal transduction. Signal storage is possibly a means of enabling the plant to maintain the appropriate levels of NR and NIR during the dark period of the natural light/dark cycle.Abbreviations cD continuous darkness - cFR continuous far-red light - D darkness - FR far-red light - NIR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.6.6.1) - Pfr phytochrome (far-red absorbing) - Pr phytochrome (red absorbing) - R red light - RG9-light long wavelength far-red light obtained with RG9 glass filter - - Ptot total phytochrome (Pr+Pfr) Professor Wilhelm Nultsch mit guten Wünschen zum 60. Geburtstag  相似文献   

15.
In filamentous ascomycetes, HOG-like signal transduction cascades are involved in the resistance to hyper-osmotic conditions and to dicarboximides and phenylpyrroles. The histidine kinase (HK) Bos1 and the mitogen-activated protein kinase (MAPK) Sak1 are important for the adaptation to hyper-osmotic and oxidative stress, development, and pathogenicity in the phytopathogenic fungus Botrytis cinerea. However, bos1Δ and sak1Δ mutants created previously, also presented different phenotypes, especially the sak1Δ mutants were not resistant to high fungicide concentrations. Since both single mutants were constructed in different parental strains, phenotypic variations due to the genetic background might be suspected. In order to establish the relationship between both protein kinases, we analyzed Sak1 phosphorylation under the control of the Bos1 HK and we realized epistasis analysis between bos1Δ and sak1Δ mutations through the construction of isogenic single and double mutants. Our results show that Bos1 negatively regulates Sak1 phosphorylation and that Bos1 regulates certain phenotypes independently of Sak1. They include fungicide susceptibility, adaptation and conidiation on high neutral osmolarity.  相似文献   

16.
17.
Mess1是新近鉴定的 STE2 0家族的蛋白激酶 .对 Mess1的基因表达和蛋白功能进行研究 ,发现其 m RNA在鼠组织中广泛分布 ,但在不同细胞系中表达显著不同 ;结构分析表明 ,Mess1蛋白N端是保守的 STE2 0样激酶催化区 ,C端是高度亲水的酸性调节区 ,包含多个潜在的丝氨酸 /苏氨酸磷酸化调节位点 .哺乳动物细胞表达的 Mess1对 MBP显示出激酶活性 ,并发生自主磷酸化 .Mess1可被砷酸盐应激激活 ,但丝裂原 EGF刺激无活化效应 .表明 Mess1可能在蛋白磷酸化的早期过程中发挥作用 ,介导细胞对严重应激刺激引起的特异性反应 .  相似文献   

18.
During a survey of two-component system genes, a list of neighboring histidine kinase and response regulator genes, encoded on the same strand, was compiled from over 200 fully sequenced bacteria. It was observed that many gene pairs overlapped, and although such overlaps can potentially occur in two phases (relative reading frames), one phase predominated for overlaps of seven or more nucleotides. Preference for a particular phase cannot be explained by arguments of sequence restraint (mutations in one gene differentially affect an overlapping gene, depending on phase). We have therefore investigated a potential explanation of the observed phase bias. For phase +1 gene overlaps, simulated point mutations in the overlapping region result in more severe changes to the downstream gene product than to the upstream gene product; vice versa in phase +2. Additionally, codon usage frequencies in nonoverlapping regions are more similar to those at the end of the upstream gene than the beginning of the downstream gene in overlaps. Taking both observations together, we propose that new gene overlaps generally arise by N-terminal extension of a downstream gene, creating a novel sequence at the start of the downstream gene. Sequence changes in this newly coding sequence will alter the sequences of both the new and the original coding sequence (the C-terminal region of the upstream gene). However, these changes will be less detrimental to the original coding sequence if the two genes overlap in phase +1, leading to selective retention during evolution of phase +1 overlaps relative to phase +2 overlaps. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Supplementary Information: The gene list and overlap dataset can be downloaded from the journal’s web site (). [Reviewing Editor: Dr. Hector Musto]  相似文献   

19.
Phytochrome photoreceptors enable plants to perceive divergent light signals leading to adaptive changes in response to differing environmental conditions. However, the mechanism of light signal transduction is not fully understood. Here we report the identification of a new signaling intermediate from Arabidopsis thaliana, Scarecrow-like (SCL)13, which serves as a positive regulator of continuous red light signals downstream of phytochrome B (phyB). SCL13 antisense lines exhibit reduced sensitivity towards red light, but only a distinct subset of phyB-mediated responses is affected, indicating that SCL13 executes its major role in hypocotyl elongation during de-etiolation. Genetic evidence suggests that SCL13 is also needed to modulate phytochrome A (phyA) signal transduction in a phyB-independent way. The SCL13 protein is localized in the cytoplasm, but can also be detected in the nucleus. Overexpression of both a nuclear and cytoplasmic localized SCL13 protein leads to a hypersensitive phenotype under red light indicating that SCL13 is biologically active in both compartments. SCL13 is a member of the plant-specific GRAS protein family, which is involved in various different developmental and signaling pathways. A previously identified phytochrome A signaling intermediate, PAT1, belongs to the same subbranch of GRAS proteins as SCL13. Although both proteins are involved in phytochrome signaling, each is specific for a different light condition and regulates a different subset of responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号