首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sustainability of soil-plant systems requires, among other things, good development and function of mycorrhizal symbioses. The effects of P and micronutrient levels on development of an arbuscular mycorrhizal fungus (AMF) and uptake of Zn, Cu, Mn and Fe by maize (Zea mays L.) were studied. A pot experiment with maize either inoculated or not with Glomus intraradices was conducted in a sand:soil (3 :1) mix (pH 6.5) in a greenhouse. Our goal was to evaluate the contribution of mycorrhizae to uptake of Cu, Zn, Mn and Fe by maize as influenced by soil P and micronutrient levels. Two levels of P (10 and 40 mg kg−1 soil) and three levels of a micronutrient mixture: 0, 1X and 2X (1X contained, in mg kg−1 soil, 4.2 Fe, 1.2 Mn, 0.24 Zn, 0.06 Cu, 0.78 B and 0.036 Mo), were applied to pots. There were more extraradical hyphae at the low P level than at the high P level when no micronutrients were added to the soil. Root inoculation with mycorrhiza and application of micronutrients increased shoot biomass. Total Zn content in shoots was higher in mycorrhizal than non-mycorrhizal plants grown in soils with low P and low or no micronutrient addition. Total Cu content in shoots was increased by mycorrhizal colonization when no micronutrients were added. Mycorrhizal plants had lower Mn contents than non-mycorrhizal plants only at the highest soil micronutrient level. AMF increased total shoot Fe content when no micronutrients were added, but decreased shoot Fe when plants were grown at the high level of micronutrient addition. The effects of G. intraradices on Zn, Cu, Mn, and Fe uptake varied with micronutrient and P levels added to soil. Accepted: 27 December 1999  相似文献   

2.
Summary The absorption of gamma-emitting fission products106Ru,125Sb,137Cs and144Ce and activation products59Fe,58Co.54Mn and65Zn by rice plants grown on two contrasting tropical soils, namely, a blak soil (pellustert) and a laterite (oxisol), and the effects of flooding were studied under controlled conditions. Results indicated greater uptake of106Ru and125Sb from the black soil than from the laterite. In contrast, the uptake of144Ce and137Cs was greater in the laterite than in the black soil. Flooding treatment enhanced the uptake of all these fission products by rice plants in the laterite soil whereas this effect was observed only for125Sb and137Cs in the black soil.The plant uptake of activation products from the two soil types showed maximum accumulation of65Zn followed by54Mn,59Fe and58Co in both soil types. Besides, uptake of these nuclides was greater from the laterite soil than from the black soil. Flooding treatment for rice while showing a reduction of59Fe uptake, showed an increase in plant uptake of58Co,54Mn and65Zn in both soil types.  相似文献   

3.
Managanese (Mn) is an essential trace element at low concentrations, but at higher concentrations is neurotoxic. It has several chemical and biochemical properties similar to iron (Fe), and there is evidence of metabolic interaction between the two metals, particularly at the level of absorption from the intestine. The aim of this investigation was to determine whether Mn and Fe interact during the processes involved in uptake from the plasma by the brain and other organs of the rat. Dams were fed control (70 mg Fe/kg), Fe-deficient (5–10 mg Fe/kg), or Fe-loaded (20 g carbonyl Fe/kg) diets, with or without Mn-loaded drinking water (2 g Mn/L), from day 18–19 of pregnancy, and, after weaning the young rats, were continued on the same dietary regimens. Measurements of brain, liver, and kidney Mn and nonheme Fe levels, and the uptake of54Mn and59Fe from the plasma by these organs and the femurs, were made when the rats were aged 15 and 63 d. Organ nonheme Fe levels were much higher than Mn levels, and in the liver and kidney increased much more with Fe loading than did Mn levels with Mn loading. However, in the brain the increases were greater for Mn. Both Fe depletion and loading led to increased brain Mn concentrations in the 15-d/rats, while Fe loading also had this effect at 63 d. Mn loading did not have significant effects on the nonheme Fe concentrations.54Mn, injected as MnCl2 mixed with serum, was cleared more rapidly from the circulation than was59Fe, injected in the form of diferric transferrin. In the 15-d-rats, the uptake of54Mn by brain, liver, kidneys, and femurs was increased by Fe loading, but this was not seen in the 63-d rats. Mn supplementation led to increased59Fe uptake by the brain, liver, and kidneys of the rats fed the control and Fe-deficient diets, but not in the Fe-loaded rats. It is concluded that Mn and Fe interact during transfer from the plasma to the brain and other organs and that this interaction is synergistic rather than competitive in nature. Hence, excessive intake of Fe plus Mn may accentuate the risk of tissue damage caused by one metal alone, particularly in the brain.  相似文献   

4.
Excess manganese (Mn) in soil is toxic to crops, but in some situations arbuscular mycorrhizal fungi (AMF) alleviate the toxic effects of Mn. Besides the increased phosphorus (P) uptake, mycorrhiza may affect the balance between Mn-reducing and Mn-oxidizing microorganisms in the mycorrhizosphere and affect the level of extractable Mn in soil. The aim of this work was to compare mycorrhizal and non-mycorrhizal plants that received extra P in relation to alleviation of Mn toxicity and the balance between Mn-oxidizing and Mn-reducing bacteria in the mycorrhizosphere. A clayey soil containing 508 mg kg−1 of extractable Mn was fertilized with 30 mg kg−1 (P1) or 45 mg kg−1 (P2) of soluble P. Soybean (Glycine max L. Merrill, cv. IAC 8-2) plants at P1 level were non-inoculated (CP1) or inoculated with either Glomus etunicatum (GeP1) or G. macrocarpum (GmP1), while plants at P2 level were left non-inoculated (CP2). Plants were grown in a greenhouse and harvested after 80 days. In the mycorrhizosphere of the GmP1 and GeP1 plants a shift from Mn-oxidizing to Mn-reducing bacteria coincided with higher soil extractability of Mn and Fe. However, the occurrence of Mn-oxidizing/reducing bacteria in the (mycor)rhizosphere was unrelated to Mn toxicity in plants. Using 16S rDNA sequence homologies, the Mn-reducing isolates were consistent with the genus Streptomyces. The Mn-oxidizers were homologous with the genera Arthrobacter, Variovorax and Ralstonia. While CP1 plants showed Mn toxicity throughout the whole growth period, CP2 plants never did, in spite of having Fe and Mn shoot concentrations as high as in CP1 plants. Mycorrhizal plants showed Mn toxicity symptoms early in the growth period that were no longer visible in later growth stages. The shoot P concentration was almost twice as high in mycorrhizal plants compared with CP1 and CP2 plants. The shoot Mn and Fe concentrations and contents were lower in GmP1 and GeP1 plants compared with the CP2 treatment, even though levels of extractable metals increased in the soil when plants were mycorrhizal. This suggests that mycorrhiza protected its host plant from excessive uptake of Mn and Fe. In addition, higher tissue P concentrations may have facilitated internal detoxification of Mn in mycorrhizal plants. The exact mechanisms acting on alleviation of Mn toxicity in mycorrhizal plants should be further investigated.  相似文献   

5.
Manganese metabolism is impaired in the Belgrade laboratory rat   总被引:4,自引:0,他引:4  
Homozygous Belgrade rats have a hypochromic anaemia due to impaired iron transport across the cell membrane of immature erythroid cells. This study aimed at investigating whether there are also abnormalities of Mn metabolism in erythroid and other types of cells. The experiments were performed with homozygous (b/b) and heterozygous (+/b) Belgrade rats and Wistar rats and included measurements of Mn uptake by reticulocytes in vitro, Mn absorption from in situ closed loops of the duodenum, and plasma clearance and uptake by several organs after intravenous injection of radioactive Mn bound to transferrin (Tf ) or mixed with serum. Similar measurements were made with 59Fe-labelled Fe in several of the experiments. Mn uptake by reticulocytes and absorption from the duodenum was impaired in b/b rats compared with +/b or Wistar rats. The plasma clearance of Mn-Tf was much slower than Mn-serum, but both were faster than the clearance of Fe-Tf. Uptake of 54Mn by the kidneys, brain and femurs was less in b/b than Wistar or +/b rats, but uptake by the liver was greater in b/b rats. Similar differences were found for 59Fe uptake by kidneys, brain and femurs but 59Fe uptake by the liver was also impaired in the liver. It is concluded that the genetic abnormality present in b/b rats affects Mn metabolism as well as Fe metabolism and that Mn and Fe share similar transport mechanisms in the cells of erythroid tissue, duodenal mucosa, kidney and blood-brain barrier. Accepted: 20 February 1997  相似文献   

6.
Although siderophores are generally viewed as biological iron uptake agents, recent evidence has shown that they may play significant roles in the biogeochemical cycling and biological uptake of other metals. One such siderophore that is produced by A. vinelandii is the triscatecholate protochelin. In this study, we probe the solution chemistry of protochelin and its complexes with environmentally relevant trace metals to better understand its effect on metal uptake and cycling. Protochelin exhibits low solubility below pH 7.5 and degrades gradually in solution. Electrochemical measurements of protochelin and metal–protochelin complexes reveal a ligand half-wave potential of 200 mV. The Fe(III)Proto3− complex exhibits a salicylate shift in coordination mode at circumneutral to acidic pH. Coordination of Mn(II) by protochelin above pH 8.0 promotes gradual air oxidation of the metal center to Mn(III), which accelerates at higher pH values. The Mn(III)Proto3− complex was found to have a stability constant of log β110 = 41.6. Structural parameters derived from spectroscopic measurements and quantum mechanical calculations provide insights into the stability of the Fe(III)Proto3−, Fe(III)H3Proto, and Mn(III)Proto3− complexes. Complexation of Co(II) by protochelin results in redox cycling of Co, accompanied by accelerated degradation of the ligand at all solution pH values. These results are discussed in terms of the role of catecholate siderophores in environmental trace metal cycling and intracellular metal release.  相似文献   

7.
Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L-1) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L-1) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected.  相似文献   

8.
To explore the copper uptake mechanisms by the Cu-tolerant plant Commelina communis, the contents of Cu and other metals (including Fe, Zn, and Mn) in roots were detected using atomic absorption spectrometer under transporter inhibitors, partial element deficiency, or Cu excess treatments, while distribution characters of Cu and other metals in root growth zones were investigated by synchrotron radiation X-ray fluorescence spectroscopy (SRXRF). Cu uptake was inhibited by the uncoupler DNP and P-type ATPase inhibitor Na3VO4, not by the Ca2+ ion channel inhibitor LaCl3, suggesting that Cu could probably be assimilated actively by root and be related with P-type ATPase, but not through Ca2+ ion channel. Fe or Zn deficiency could enhance Cu uptake, while 100 μM Cu inhibited Fe, Zn, and Mn accumulation in roots significantly. Metal distribution under 100 μM Cu treatment was investigated by SRXRF. High level of Cu was found in the root meristem, and higher Cu concentrations were observed in the vascular cylinder than those in the endodermis, further demonstrating the initiative Cu transport in the root of C. communis. Under excess Cu stress, most Fe was located in the epidermis, and Fe concentrations in the endodermis were higher than those in the vascular cylinder, suggesting Cu and Fe competition not only in the epidermal cells but also for the intercellular and intracellular transport in roots. Zn was present in the meristem and the vascular cylinder similar to Cu. Cu and Zn showed a similar pattern. Mn behaves as Zn does, but not like Fe.  相似文献   

9.
The liver is the primary organ involved in manganese (Mn) homeostasis. The human hepato-carcinoma cell line, Hep-G2, shows many liver specific functions. Consequently, Hep-G2 cells were investigated as a possible model of hepatic metabolism of Mn. Initial experiments showed that the concentration of Mn in the diet, or culture medium, similarly affected the retention of Mn by isolated rat hepatocytes and Hep-G2 cells. Manganese uptake by Hep-G2 cells suggested that uptake was followed by release from the cell. Uptake was saturable and half-maximal at 2.0 μmol Mn/L, and was inhibited by iodoacetate, vanadate, cold, and bepridil. The cations Fe2+, Cu2+, Ni2+, Cd2+, and Zn2+ decreased Mn uptake. Uptake was dependent on Calcium (Ca) concentration in a manner that resembled saturation kinetics. Cells that were pulsed with54Mn and then placed into nonradioactive medium quickly released a large portion of their internalized Mn. Release of internalized Mn could be inhibited by low temperature, nocodozole, quinacrine and sodium azide. These data show that Hep-G2 cells are a potentially good model of hepatic Mn metabolism. Mn is taken up by a facilitated process that may be related to Ca uptake. Release apparently is an active, controlled process, that may involve microtubules and lysosomes. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination.  相似文献   

10.
It is known that heme iron and inorganic iron are absorbed differently. Heme iron is found in the diet mainly in the form of hemoglobin and myoglobin. The mechanism of iron absorption remains uncertain. This study focused on the heme iron uptake by Caco-2 cells from a hemoglobin digest and its response to different iron concentrations. We studied the intracellular Fe concentration and the effect of time, K+ depletion, and cytosol acidification on apical uptake and transepithelial transport in cells incubated with different heme Fe concentrations. Cells incubated with hemoglobin-digest showed a lower intracellular Fe concentration than cells grown with inorganic Fe. However, uptake and transepithelial transport of Fe was higher in cells incubated with heme Fe. Heme Fe uptake had a low V max and K m as compared to inorganic Fe uptake and did not compete with non-heme Fe uptake. Heme Fe uptake was inhibited in cells exposed to K+ depletion or cytosol acidification. Heme oxygenase 1 expression increased and DMT1 expression decreased with higher heme Fe concentrations in the media. The uptake of heme iron is a saturable and temperature-dependent process and, therefore, could occur through a mechanism involving both a receptor and the endocytic pathway.  相似文献   

11.
Rhizosphere microbes may enhance nutrient uptake by plants. Here we studied the effect of Trichoderma asperellum inoculation on the uptake of Fe, Cu, Mn, and Zn by wheat (Triticum aestivum L) grown in a calcareous medium. To this end, an experiment involving two factors, namely Fe enrichment (ferrihydrite enrichment and non-enrichment of the growing medium), and inoculation/non-inoculation with Trichoderma asperellum strain T34, was performed twice under the same conditions. The increase in Fe availability as a result of ferrihydrite enrichment did not enhance plant dry matter production. The effect of T34 on the concentration of Fe, Cu, Mn and Zn, and the total amount of Cu, Mn, and Zn in the aerial parts differed depending on the degree of ferrihydrite enrichment. Inoculation with T34 increased Fe concentration in Fe-deficient media, thus revealing a positive effect of this microorganism on Fe nutrition in wheat. However, T34 significantly decreased the concentration and total amount of Cu, Mn, and Zn in the aerial parts, but only in ferrihydrite-enriched medium. This adverse effect of T34 on Cu, Mn, and Zn uptake by wheat plants may have been related to conditions of restricted availability where potential competition for nutrients between microorganisms and plants can be more marked.  相似文献   

12.
Absorption from food is an important route for entry of the toxic metal, cadmium, into the body. Both cadmium and iron are believed to be taken up by duodenal enterocytes via the iron regulated, proton-coupled transporter, DMT1. This means that cadmium uptake could be enhanced in conditions where iron absorption is increased. We measured pH dependent uptake of 109Cd and 59Fe by duodenum from mice with an in vitro method. Mice with experimental (hypoxia, iron deficiency) or hereditary (hypotransferrinaemia) increased iron absorption were studied. All three groups of mice showed increased 59Fe uptake (p<0.05) compared to their respective controls. Hypotransferrinaemic and iron deficient mice exhibited an increase in 109Cd uptake (p<0.05). Cadmium uptake was not, however, increased by lowering the medium pH from 7.4 to 6. In contrast, 59Fe uptake (from 59FeNTA2) and ferric reductase activity was increased by lowering medium pH in control and iron deficient mice (p<0.05). The data show that duodenal cadmium uptake can be increased by hereditary iron overload conditions. The uptake is not, however, altered by lowering medium pH suggesting that DMT1-independent uptake pathways may operate.  相似文献   

13.
Four plant species were found naturally growing at an acid mine drainage (AMD)-impacted site contaminated with 9430 mg kg?1Al, 76,000 Fe mg kg?1, ~150 mg kg?1Mn, and 420 mg kg?1 Mg: soybeans (Glycine max), cattails (Typha latifolia), goldenrods (Solidago sp.), and reed grass (Phragmites australis). The metal uptake selectivity was Fe?Mg~Mn>Al for cattails, Mg>Mn>Fe>Al for goldenrods, and Fe?Al>Mg>Mn for reeds. When metal translocation factors, shoot concentrations, and toxicity of the contaminants were correlated, cattails and reeds were more effective at the site than the soybeans or goldenrods. Cattails had a translocation factor of 3.71 for Al, 3.3 for Mg, 1.98 for Mn, and only 0.2 for Fe. The translocation factors for reeds were much higher for Fe (8.64) and Al (7.3). Cattails (1.11 mg Al g?1 shoot) and reeds (3.4 mg g?1 g shoot) were both able to hyperaccumulate Al. Additional research is warranted to ascertain if the uptake efficiencies can be enhanced by the use of chelators.  相似文献   

14.
The influence of FeEDDHA (0, 0.2 and 2 μg Fe g−1 soil) and NaH2PO4·H2O (0 and 120 μg Pg−1 soil) on the growth of two Fe-ineffective soybean (Glycine max L. Merr.) varieties (anoka and T203) on a calcareous soil at two soil temperatures (16 and 24°C) was compared under greenhouse conditions. The two soybean varieties differed in the following respects: (a) T203 accumulated smaller concentrations of Fe in washed tops than Anoka under comparable conditions; (b) T203 was more susceptible to Fe deficiency and its accentuation by high levels of fertilizer P than Anoka; (c) T203 accumulated lower quantities of Mn in tops than Anoka under comparable conditions; (d) T203, but not Anoka, developed Mn deficiency symptoms when treated with P and 2 μg Fe g−1 at 16°C. Fe deficiency was more severe in both varieties at the higher soil temperature due apparently to: (a) greater plant concentration of P in tops at 24°C; and/or (b) an increased rate of plant growth and greater dilution of Fe in young tissue at 24°C. Foliar P concentration was increased much more than foliar Fe concentration by an increase in soil temperature. Severely Fe deficient T203 plants grown without FeEDDHA at 24°C accumulated less foliar Mn than their FeEDDHA counterparts. Comparisons of Fe effectiveness of various soybean cultivars based on relative responses to FeEDDHA can be influenced by differential effects on Mn nutrition.  相似文献   

15.
Many metal transporters in plants are promiscuous, accommodating multiple divalent cations including some which are toxic to humans. Previous attempts to increase the iron (Fe) and zinc (Zn) content of rice endosperm by overexpressing different metal transporters have therefore led unintentionally to the accumulation of copper (Cu), manganese (Mn) and cadmium (Cd). Unlike other metal transporters, barley Yellow Stripe 1 (HvYS1) is specific for Fe. We investigated the mechanistic basis of this preference by constitutively expressing HvYS1 in rice under the control of the maize ubiquitin1 promoter and comparing the mobilization and loading of different metals. Plants expressing HvYS1 showed modest increases in Fe uptake, root‐to‐shoot translocation, seed accumulation and endosperm loading, but without any change in the uptake and root‐to‐shoot translocation of Zn, Mn or Cu, confirming the selective transport of Fe. The concentrations of Zn and Mn in the endosperm did not differ significantly between the wild‐type and HvYS1 lines, but the transgenic endosperm contained significantly lower concentrations of Cu. Furthermore, the transgenic lines showed a significantly reduced Cd uptake, root‐to‐shoot translocation and accumulation in the seeds. The underlying mechanism of metal uptake and translocation reflects the down‐regulation of promiscuous endogenous metal transporters revealing an internal feedback mechanism that limits seed loading with Fe. This promotes the preferential mobilization and loading of Fe, therefore displacing Cu and Cd in the seed.  相似文献   

16.
Uptake of iodide was studied in the marine microalga Isochrysis sp. (isol. Haines, T.ISO) during short‐term incubations with radioactive iodide (125I?). Typical inhibitors of the sodium/iodide symporter (NIS) did not inhibit iodide uptake, suggesting that iodide is not taken up through this transport protein, as is the case in most vertebrate animals. Oxidation of iodide was found to be an essential step for its uptake by T.ISO and it seemed likely that hypoiodous acid (HOI) was the form of iodine taken up. Uptake of iodide was inhibited by the addition of thiourea and of other reducing agents, like L‐ascorbic acid, L‐glutathione and L‐cysteine and increased after the addition of oxidized forms of the transition metals Fe and Mn. The simultaneous addition of both hydrogen peroxide (H2O2) and a known iodide‐oxidizing myeloperoxidase (MPO) significantly increased iodine uptake, but the addition of H2O2 or MPO separately, had no effect on uptake. This confirms the observation that iodide is oxidized prior to uptake, but it puts into doubt the involvement of H2O2 excretion and membrane‐bound or extracellular haloperoxidase activity of T.ISO. The increase of iodide uptake by T.ISO upon Fe(III) addition suggests the nonenzymatic oxidation of iodide by Fe(III) in a redox reaction and subsequent influx of HOI. This is the first report on the mechanism of iodide uptake in a marine microalga.  相似文献   

17.
  • Development of alleviation strategies, which enhance plant growth under heavy metal stress, is important. Inorganic (zeolite) and organic (diethylene triamine penta‐acetic acid, DTPA) amendments affecting the alleviation of lead (Pb) stress in a calcareous soil were tested by investigating leaf nutrient uptake of tomato (Lycopersicon esculentum L.) plants.
  • Experimental quantities of lead (Pb) at 0, 50, 100 and 150 mg·kg?1 soil, zeolite (clinoptilolite) at 0%, 0.5% and 1%, and DTPA at 0, 50 and 100 mg·kg?1 soil were tested in a factorial experiment with three plant replicates.
  • According to the anova , Pb, zeolite, DTPA and their interactions significantly affected plant concentrations of nitrogen (N), potassium (K), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and lead (Pb). With increasing DTPA concentration at different levels of zeolite and Pb, plant concentrations of macro‐ and micronutrients significantly increased. Increasing soil Pb increased leaf Pb concentration and decreased the uptake of N, K, Fe, Zn, Cu and Mn. Although with increasing Pb concentration the uptake of macro‐ and micronutrients decreased in tomato, the use of zeolite and DTPA alleviated this stress by increasing nutrient uptake compared to the control. Interestingly, however, increased levels of zeolite and DTPA led to a decreased uptake of nutrients by plants (compared with control), indicating the absorption of such nutrients by the two amendments and their partial release for further plant use.
  • Zeolite and DTPA may alleviate the negative effects of soil Pb on tomato growth by decreasing nutrient leaching and increasing plant nutrient uptake.
  相似文献   

18.
Summary The effects of P and Mn on growth response and uptake of Fe, Mn and P by grain sorghum were investigated using nutrient culture. High P and Mn concentrations in solution (greater than 40 and 1 mg/l for P and Mn, respectively) markedly reduced plant height and shoot and root dry weight of 4-week-old sorghum plants. High Mn concentrations in solution increased the concentrations of Mn and P in shoot tissue and uptake of Mn, but depressed the uptake of P. High levels of P enhanced Mn uptake by sorghum and accentuated Mn toxicity at low Mn levels. The tissue Fe and total uptake of Fe were both reduced markedly by the high levels of P and Mn concentrations in solution. The increases of P, Mn and Fe concentrations in root tissue with a concomitant decrease of Fe in shoots suggested that the translocation of Fe from roots to shoots was hindered under high P and Mn conditions. Since coating occurred on root surfaces and intensified with increasing Mn concentrations in the substrate, part of the reduction of Fe in shoots could be attributed to the formation of high valent manganese oxides on the root surfaces which may retain Fe and reduce its absorption by sorghum.Contribution from the Department of Agronomy and Range Sci., University of California, Davis, CA.  相似文献   

19.
Comparison of plant uptake and plant toxicity of various ions in wheat   总被引:1,自引:0,他引:1  
The effects of varying solution concentrations of manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga) and lanthanum (La) on plant chemical concentrations, plant uptake and plant toxicity were determined in wheat (Triticum aestivum L.) grown in a low ionic strength (2.7×10–3 M solution culture). Increasing the solution concentration of Mn, Zn, Cu, B, Fe, Ga and La increased plant concentrations of that ion. Asymptotic maximum plant concentrations were reached for Zn (10 mg kg DM–1 in the roots), Ga (2 mg kg DM–1 in the tops and 18 mg kg DM–1 in the roots) and La (0.4 mg kg DM–1 in the tops and 4 mg kg DM–1 in the roots). Plant ion concentrations were, on average, 3 times higher in the roots than the tops for Mn and Zn, 7 times for Cu, 9 times for Fe, 12 times for Ga and 15 times for La. In contrast, B concentrations were higher in the tops than the roots by, on average, 2 times. The estimated toxicity threshold (plant concentration at which a rapid decrease in yield occurred) in the tops was 0.4 mg g DM–1 for B, 2 for Zn, 0.075 for Cu and 0.09 for La and in the roots 0.2 mg g DM–1 for B, 5 for Zn, 0.3 for Cu and 3 for La. Plant uptake rates of the ions (as estimated by the slope of the relationship between solution ion concentrations and plant ion concentrations) was in the order B 250 mg kg DM–1 M –1). Plant toxicity was estimated as the reciprocal of the plant concentration that reduced yield by 50% (change in relative yield per mg ion kg DM–1). The plant toxicity of the ions tested was in the order Mn相似文献   

20.
Direct biotic and homogeneous abiotic Fe(II) oxidation rates as well as oxidation rates of Fe(II) with MnOX were determined in laboratory experiments and compared with biotic Mn(II) oxidation rates. In groundwaters and thermal installation waters, parameters for both Fe(II) oxidation steps were studied and products of biotic and abiotic Fe(II) and Mn(II) oxidation were analyzed. Direct Fe(II) oxidation of active Leptothrix cholodnii cultures can reach first-order rates of up to 1.17 ± 0.90 h?1. Second-order rates of Fe(II) oxidation with biogenic, Leptothrix-cholodnii- and Leptothrix-discophora-SS-1-originating MnOX lead to rates comparable with those as obtained with abiotic H+-birnessite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号