首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H H Suh  L F Tseng 《Life sciences》1990,46(11):759-765
Antinociceptive tolerance and cross-tolerance to intracerebroventricular (i.c.v.) beta-endorphin, morphine, and DPDPE (D-Pen2-D-Pen5-enkephalin) induced by a prior i.c.v. administration of beta-endorphin, morphine and DPDPE, respectively, were studied in mice. Acute tolerance was induced by i.c.v. pretreatment with beta-endorphin (0.58 nmol), morphine (6 nmol) and DPDPE (31 nmol) for 120, 180 and 75 min, respectively. Various doses of beta-endorphin, morphine or DPDPE were then injected. The tail-flick and hot-plate tests were used as antinociceptive tests. Pretreatment of mice with beta-endorphin i.c.v. reduced inhibition of the tail-flick and hot-plate responses to i.c.v. administered beta-endorphin, but not morphine and DPDPE. Pretreatment of mice with morphine i.c.v. reduced inhibition of the tail-flick and hot-plate responses to morphine but not beta-endorphin. Pretreatment of mice with DPDPE reduced inhibition of the tail-flick and hot-plate responses to DPDPE but not beta-endorphin. The results indicate that one injection of beta-endorphin, morphine or DPDPE induces acute antinociceptive tolerance to its own distinctive opioid receptor and does not induce cross-tolerance to other opioid agonists with different opioid receptor specificities. The data support the hypothesis that beta-endorphin, morphine and DPDPE produce antinociception by stimulating specific epsilon, mu- and delta-opioid receptors, respectively.  相似文献   

2.
The present study was designed to investigate the effect of a selective GABA(B) receptor agonist baclofen on the pain-like nociceptive behavior (scratching, biting and licking) induced by intrathecal (i.t.) injection of N-methyl-D-aspartate (NMDA) or (+)TAN-67, the enantiomorphs of 2-methyl-4aalpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aalpha-octahydro-quinolino[2,3,3g]isoquinoline (TAN-67), in the mouse. NMDA (0.05-0.2 microg/mouse) given i.t. immediately caused nociception in a dose-dependent manner. The nociception was significantly antagonized by i.t. co-injection with dizocilipine (0.1-1.0 microg/mouse), a non-competitive NMDA receptor antagonist. I.t. co-injection with baclofen (37.5-150 ng/mouse) significantly reduced the NMDA-induced nociceptive behavior in a dose-dependent fashion. The inhibition produced by baclofen was completely reversed by a selective GABA(B) receptor antagonist 2-hydroxysaclofen (0.15 and 0.3 microg/mouse). An i.t. injection of (+)TAN-67 at doses of 3.75-15 microg/mouse elicited a long-lasting and a dose-related nociception. The nociceptive behavior induced by (+)TAN-67 given i.t. was markedly suppressed by i.t. co-injection with baclofen (3-30 ng/mouse), and the inhibitory effect of baclofen was prevented by i.t. injection of 2-hydroxysaclofen (1 and 3 microg/ mouse). In addition, the (+)TAN-67-induced nociception was also attenuated by i.t. co-injection with dizocilipine (0.1-1.0 microg/mouse). These results suggest that spinal GABA(B) receptors may be implicated in the expression of nociception elicited by i.t. injection of either NMDA or (+)TAN-67 in the mouse.  相似文献   

3.
家兔伏核—杏仁核神经通路在吗啡镇痛中的作用   总被引:6,自引:0,他引:6  
于龙川  韩济生 《生理学报》1990,42(3):277-283
用辐射热照射家兔鼻嘴侧部皮肤,测量其躲避反应潜伏期作为痛反应阈,简称痛阈。通过预先埋植的慢性套管向伏核或杏仁核内进行注射,结果表明:(1)在家兔的伏核内微量注射吗啡可产生镇痛作用,该作用可被杏仁核内注射纳洛酮所削弱,并有量效依从关系;在杏仁核内注射甲啡肽抗血清(ME AS)或β-內啡肽抗血清(β-EP AS)亦可削弱上述镇痛作用;(2)在杏仁核内微量注射吗啡可产生镇痛作用,此作用不能被伏核内注射纳洛酮所阻断;(3)在伏核内注射吗啡所产生的镇痛作用可被同一部位注射γ-氨基丁酸(GAEA)受体阻断剂氯甲基荷包牡丹碱所增强,被 GABA 受体激动剂异鹅羔胺所削弱。上述结果提示:在家兔脑内从伏核到杏仁核可能存在一条与镇痛有关的神经通路,伏核内的阿片样物质及杏仁核内的甲啡肽,β-内啡肽可能参与镇痛信息的传递,而伏核内的 GABA 可能有对抗吗啡镇痛的作用。  相似文献   

4.
Choi S  Jung SY  Rhim H  Jeong SW  Lee SM  Nah SY 《Life sciences》2000,67(8):969-975
The analgesic effect of ginsenosides or morphine was first determined following intrathecal (i.t.) administration in rat tail-flick test. The effect of chronic i.t. co-administration of ginsenosides with morphine on the development of opioid tolerance were also examined using rat tail-flick test. Administration of ginsenosides (i.t.) produced a weak antinociception in a dose-dependent manner. Administration of morphine (i.t.) also produced antinociception in a dose-dependent manner. The ED50 was 1.20 microg (1.14-1.29 microg). However, acute i.t. co-administration of ginsenosides with morphine was not additive in antinociception. Repeated i.t. co-administration of 200 microg ginsenosides with 10 microg morphine inhibited the development of tolerance induced by 10 microg morphine in rat tail-flick test, although i.t. co-administration of 50 or 100 microg ginsenosides with morphine was without effect. In conclusion, these results indicate that i.t. administered ginsenosides produce an antinociception in rat tail-flick test and also prevent opioid tolerance caused by chronic treatment with morphine at the spinal sites.  相似文献   

5.
Improgan is the prototype drug from a new class of non-opioid analgesics chemically related to histamine and histamine antagonists, but the mechanism of action of these compounds has not been identified. Because several classes of analgesics act in the brain by reducing GABAergic inhibition of endogenous pain-relieving circuits, and because the activity of these substances is abolished by the GABA(A) agonist muscimol, the present study assessed the effects of muscimol on improgan antinociception in rats. Intracerebroventricular (icv) improgan (80 microg) and morphine (20 microg) both induced 80-100% of maximal analgesic responses on the tail flick test 10 to 30 min later. However, muscimol pretreatment (0.5 microg, icv) completely eliminated the antinociceptive activity of both compounds. Since improgan in vitro lacks activity at opioid and GABA(A) receptors, these findings: 1) confirm earlier literature showing that muscimol inhibits morphine analgesia, and 2) suggest that improgan activates a supraspinal, descending analgesic pathway, possibly via inhibition of GABAergic transmission. Since muscimol is the first compound discovered which inhibits improgan analgesia, muscimol will be a useful tool for the further characterization of this new class of pain-relieving substances.  相似文献   

6.
Previous studies have demonstrated that microinjection of baclofen, a GABA(B) receptor agonist, into the nucleus of the solitary tract (NTS) results in an enhanced pressor response in hypertensive (HT) rats compared with normotensive (NT) rats, suggesting a possible alteration in the responses of neurons in this area to activation of GABA(B) receptors. The following studies were designed to determine whether HT alters the sensitivity of neurons in the NTS to GABA receptor agonists. Sham-operated NT and unilateral nephrectomized, renal-wrap HT Sprague-Dawley rats were anesthetized, and the responses of NTS neurons receiving aortic nerve (AN) afferent inputs to iontophoretic application of GABA, the GABA(A) receptor agonist muscimol, and the GABA(B) agonist baclofen were examined. The AN input was classified as monosynaptic (MSN) if the cell responded to each of two stimuli separated by 5 ms with an action potential. If the cell did not respond, the input was considered polysynaptic (PSN). In MSNs, inhibition of AN-evoked discharge by GABA was not altered in 1 wk of HT but was reduced in 4 wk of HT, whereas in PSNs, sensitivity to GABA was reduced at 1 and 4 wk of HT. In HT rats, inhibition of AN-evoked discharge by baclofen was enhanced in MSNs, but not in PSNs, after 1 and 4 wk of HT, whereas inhibition by muscimol was reduced in MSNs and PSNs at 1 and 4 wk of HT. Changes in sensitivity to muscimol and baclofen within MSNs were the same whether the MSN received a slowly or a rapidly conducted AN afferent input. The results demonstrate that early in HT the sensitivity of NTS neurons to inhibitory amino acids is altered and that these changes are maintained for > or =4 wk. The alterations are dependent on the subtype of GABA receptor being activated and whether the neuron receives a mono- or polysynaptic baroreceptor afferent input.  相似文献   

7.
Antinociceptive mechanisms of orally administered decursinol in the mouse   总被引:7,自引:0,他引:7  
Choi SS  Han KJ  Lee JK  Lee HK  Han EJ  Kim DH  Suh HW 《Life sciences》2003,73(4):471-485
Antinociceptive profiles of decursinol were examined in ICR mice. Decursinol administered orally (from 5 to 200 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured by the tail-flick and hot-plate tests. In addition, decursinol attenuated dose-dependently the writhing numbers in the acetic acid-induced writhing test. Moreover, the cumulative response time of nociceptive behaviors induced by an intraplantar formalin injection was reduced by decursinol treatment during the both 1st and 2nd phases in a dose-dependent manner. Furthermore, the cumulative nociceptive response time for intrathecal (i.t.) injection of TNF-alpha (100 pg), IL-1 beta (100 pg), IFN-gamma (100 pg), substance P (0.7 microg) or glutamate (20 microg) was dose-dependently diminished by decursinol. Intraperitoneal (i.p.) pretreatment with yohimbine, methysergide, cyproheptadine, ranitidine, or 3,7-dimethyl-1-propargylxanthine (DMPX) attenuated inhibition of the tail-flick response induced by decursinol. However, naloxone, thioperamide, or 1,3-dipropyl-8-(2-amino-4-chloro-phenyl)-xanthine (PACPX) did not affect inhibition of the tail-flick response induced by decursinol. Our results suggests that decursinol shows an antinociceptive property in various pain models. Furthermore, antinociception of decursinol may be mediated by noradrenergic, serotonergic, adenosine A(2), histamine H(1) and H(2) receptors.  相似文献   

8.
The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1–10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1–10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1–5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5–10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen–induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.  相似文献   

9.
Bhalla S  Matwyshyn G  Gulati A 《Peptides》2003,24(4):553-561
Several neurotransmitter mechanisms have been proposed to play a role in the development of morphine tolerance. The present study provides evidence for the first time that endothelin (ET) antagonists can restore morphine analgesia in morphine tolerant rats. Tolerance to morphine was induced by subcutaneous implantation of six morphine pellets during a 7-day period. The degree of tolerance to morphine was measured by determining analgesic response (tail-flick latency) and hyperthermic response to morphine sulfate (8 mg/kg, subcutaneously (s.c.)) in placebo and morphine pellet implanted rats. The maximal tail-flick latency in morphine pellet-vehicle treated rats (7.54 s) was significantly lower (P<0.05) when compared to placebo pellet-vehicle treated rats (10s), indicating that tolerance developed to the analgesic effect of morphine. In separate sets of experiments, ET antagonists, BQ123 (10 microg, intracerebroventricularly (i.c.v.)) and BMS182874 (50 microg, i.c.v.) were administered in placebo and morphine tolerant rats. BQ123 was injected twice daily for 7 days and once on day 8. BMS182874 was administered only on day 8. Morphine (8 mg/kg, s.c.) was administered 30min after BQ123 or BMS182874 administration. It was found that both BQ123 and BMS182874 potentiated morphine analgesia in placebo and morphine tolerant rats. BQ123 potentiated tail-flick latency by 30.0% in placebo tolerant rats and 94.5% in morphine tolerant rats compared to respective controls. BMS182874 potentiated tail-flick latency by 30.2% in placebo tolerant rats and 66.7% in morphine tolerant rats. Morphine-induced hyperthermic effect was also potentiated by BQ123 and BMS182874. The duration of analgesic action was also prolonged by BQ123 and BMS182874. The effect of BMS182874 was less as compared to BQ123. BQ123 and BMS182874 are selective ET(A) receptor antagonists. Therefore, it is concluded that ET(A) receptor antagonists restore morphine analgesia in morphine tolerant rats.  相似文献   

10.
Lee TY  Pan JT 《Life sciences》2001,68(17):1965-1975
Central administration of gamma-aminobutyric acid (GABA) has been shown to stimulate the secretion of prolactin (PRL). Whether GABA acts via dopamine, the major PRL-inhibiting hormone, and which GABA receptor type(s) is involved have not been ascertained. Both GABA(A) and GABA(B) receptor agonists and/or antagonists were administered centrally in this study and their effects on both basal and diurnal changes of tuberoinfundibular dopaminergic (TIDA) neuronal activity were determined by measuring the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) in the median eminence (ME). Serum PRL level was determined by RIA. Ovariectomized, estrogen-primed Sprague-Dawley rats implanted with intracerebroventricular (icv) cannulae were used. Muscimol (1 ng/3 microl/rat, icv), a GABA(A) receptor agonist, but not baclofen (1-100 ng/3 microl/rat, icv), a GABA(B) receptor agonist, injected in the morning significantly lowered and elevated ME DOPAC and serum PRL levels, respectively at 15 and 30 min. Lower and higher doses of muscimol were not effective. The effects of muscimol could also be prevented by co-administration of bicuculline (0.1-10 ng/3 microl, icv), a GABA(A) receptor antagonist. When bicuculline (10-500 ng/3 microl, icv) was given in the afternoon (at 1500 h), it significantly reversed the lowered ME DOPAC level in the afternoon and prevented the concurrent PRL surge. We conclude that endogenous GABA acting through GABA(A) receptors may play a significant role in the control of basal and diurnal changes of TIDA neuronal activity, and in turn, PRL secretion.  相似文献   

11.
Bayer S  Jellali A  Crenner F  Aunis D  Angel F 《Life sciences》2003,72(13):1481-1493
In the enteric nervous system, activation of neuronal GABA(A)- and GABA(B)-receptors has been shown to modulate neuronal activity. The consequences of this modulation depend on the location in the gastrointestinal tract or the animal species studied. These data illustrate the complexity of GABA-induced effects. Furthermore, the GABA(C)-receptor has been identified in a neuroendocrine cell line suggesting a modulating role of this third type of GABA receptor in intestinal functions. Therefore, the modulating role of GABA-receptor agonists was determined in circular preparations of rat distal colon during electrical nerve stimulation (NS) in vitro. Mechanical response to NS was characterized by a relaxation followed at the end of the stimulation by an off-contraction. In normal Krebs solution (basal conditions), muscimol and baclofen, respectively GABA(A)- and GABA(B)-agonists, induced a significant increase of the electrically induced off-contraction. The GABA(C) agonist, CACA, showed no significant effect on the response to NS. Excitatory effects of muscimol on the off-contraction were abolished in the presence of atropine. Furthermore, in the presence of atropine, muscimol increased the amplitude of the electrically induced relaxation; similarly the baclofen-induced increase of off-contraction amplitude was significantly lower than that observed in control conditions. Baclofen and muscimol effects on the off-contraction were abolished in the presence of hexamethonium or guanethidine. Furthermore, muscimol and baclofen did not induce any significant change on the response to NS in the presence of L-NAME and apamin together. Thus, it seems that in rat distal colon, GABA regulates significantly both excitatory (through GABA(A)- and GABA(B)-receptors) and inhibitory (through GABA(A)-receptors) neuronal activities. We also gave evidence for a possible interplay between GABAergic intrinsic neurons and adrenergic nerve terminals. Finally, it is shown for the first time the presence of the GABA vesicular transporter (VIAAT) around myenteric ganglia of rat colon.  相似文献   

12.
The effect of gamma-aminobutyric acid-receptor agonists, GABA and muscimol on the pituitary-adrenocortical activity, measured indirectly through corticosterone secretion, and the receptors involved were investigated in conscious rats. GABA given ip induced a dual effect, in lower dose (10 mg/kg) it significantly decreased the resting serum corticosterone levels while in higher doses (100-500 mg/kg) it considerably raised that level. Muscimol (0.5 mg/kg ip) also increased the corticosterone concentration. Both GABA and muscimol given intracerebroventricularly (icv) induced a significant, dose-related increase in serum corticosterone levels. Bicuculline, a GABAA-receptor antagonist, totally abolished the corticosterone response to GABA but did not influence the response to muscimol. Pretreatment with atropine did not affect the corticosterone response to GABA but significantly diminished the response to muscimol. These results suggest that GABA moderately inhibits the pituitary-adrenal axis at the pituitary level but significantly stimulates it at the hypothalamic level. The stimulatory effect of GABA, but not muscimol, is mediated by hypothalamic GABAA-receptors, and in the effect of muscimol hypothalamic cholinergic, muscarinic receptors are involved to a significant extent.  相似文献   

13.
1. GABA receptors in Achatina identifiable giant neurones were classified into the muscimol I, muscimol II and baclofen types. Muscimol I and II type GABA receptors were sensitive to GABA and muscimol but insensitive to baclofen, whereas baclofen type receptors were sensitive to GABA and baclofen but insensitive to muscimol. Muscimol I and baclofen types were associated with the inhibition caused by GABA, while muscimol II type with the GABA excitation.2. GABA, muscimol and TACA produced a transient outward current (Iout) with an increase in membrane conductance (g) of an Achatina neurone, TAN, having the muscimol I type GABA receptors. Their relative potency values (RPV) at GABA ed50 (approximately 10−4 M) were: GABA: muscimol: TACA = 1:0.6:0.3. The GABA effects were potentiated by pentobarbitone, antagonized competitively by pitrazepin and non-competitively by picrotoxin and diazepam, and unaffected by bicuculline. The ionic mechanism of effects of GABA and its two analogues was the increase in membrane Cl conductance (gCl).3. GABA and (±)-baclofen produced a slow Iout with a g increase of another Achatina neurone, RPeNLN, having the baclofen type GABA receptors. The two compounds were almost equipotent (ed50: approximately 3 × 10−4 M). The ionic mechanism of their effects was the increase in gk. The two compounds hardly affected the voltage-gated and slowly inactivating calcium current. Iout produced by GABA and (±)-baclofen were reduced by TEA, but unaffected by 4-AP, bicuculline, pitrazepin and picrotoxin.4. β-hydroxy-l-glutamic acid (l-BHGA) showed the marked effects on the Achatina giant neurones; the two neurones were excited by the compound, whereas the three inhibited. D-BHGA, l-Glu, d-Glu and NMDA were less effective than l-BHGA or almost ineffective. Erythro-l-BHGA was more or less effective than threo-l-BHGA according to the neurones tested.5. α-Kainic acid and domoic acid excited the two neurones, which were excited by l-BHGA. l-Quisqualic acid showed the similar effects to l-BHGA, which were mostly much stronger than l-BHGA. Erythro-l-tricholomic acid and dl-ibotenic acid showed the effects similar to l-BHGA selectively on some neurones.6. It was pointed out that the pharmacological features of GABA on the Achatina neurones are simpler than those of l-BHGA, due to the simpler structure of the former compound having less binding sites than the latter.  相似文献   

14.
Stimulation of either GABA(A) or GABA(B) receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A) receptor agonist muscimol and GABA(B) receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol) stimulated responding but a higher dose (660 pmol) induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol) also stimulated intake of freely available chow. Muscimol (220-660 pmol) was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol) induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A) or GABA(B) receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.  相似文献   

15.
In the cerebellar glomerulus, GABAergic synapses formed by Golgi cells regulate excitatory transmission from mossy fibers to granule cells through feed-forward and feedback mechanisms. In acute cerebellar slices, we found that stimulating Golgi cell axons with a train of 10 impulses at 100 Hz transiently inhibited both the phasic and the tonic components of inhibitory responses recorded in granule cells. This effect was blocked by the GABA(B) receptor blocker CGP35348, and could be mimicked by bath-application of baclofen (30 μM). This depression of IPSCs was prevented when granule cells were dialyzed with GDPβS. Furthermore, when synaptic transmission was blocked, GABA(A) currents induced in granule cells by localized muscimol application were inhibited by the GABA(B) receptor agonist baclofen. These findings indicate that postsynaptic GABA(B) receptors are primarily responsible for the depression of IPSCs. This inhibition of inhibitory events results in an unexpected excitatory action by Golgi cells on granule cell targets. The reduction of Golgi cell-mediated inhibition in the cerebellar glomerulus may represent a regulatory mechanism to shift the balance between excitation and inhibition in the glomerulus during cerebellar information processing.  相似文献   

16.
To examine the role of the GABA(A) receptor mediating systems in the control of gonadotropin-releasing hormone (GnRH) release from the ventromedial-infundibular region (VEN/IN) of anestrous ewes, the extracellular concentrations of GnRH, beta-endorphin, noradrenaline (NE), dopamine (DA), 4-hydroxy-3-methoxy-phenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC) were quantified during local stimulation or blockade of GABA(A) receptors with muscimol or bicuculline respectively. In most animals stimulation of GABA(A) receptors significantly attenuates GnRH release with concomitant increase of beta-endorphin and DA release, and MHPG and DOPAC levels. Blockade of the GABA(A) receptors generally did not affect GnRH and NE release but inhibited in most animals beta-endorphin release and decreased dopaminergic activity. These results suggest, that GABA may suppress GnRH release directly by GABA(A) receptor mechanism on the axon terminal of GnRH neurons or indirectly by GABA(A) receptor processes activating beta-endorphin-ergic and dopaminergic neurons in the VEN/NI. On the basis of these results in could not be distinguish between these two events. The decrease in extracellular beta-endorphin and dopamine concentration without evident changes in the GnRH level during GABA(A) receptor blockade may suggest that other neuronal systems are involved in this effect.  相似文献   

17.
The bilateral intracerebral injection of the specific GABA agonists muscimol (25, 100 ng) and THIP (500 ng) into the pallido-entopeduncular nucleus (EP) and the subthalamic nucleus (STN) of rats induced a behavioural stimulation closely resembling the syndrome evoked by direct stimulation of dopamine receptors in the striatum or by the systemic injection of dopamine agonists. The rats showed strong locomotor and rearing activity followed by characteristic stereotyped behaviour consisting of sniffing and gnawing activity. The stimulation induced by muscimol (25 ng) was found independent of dopamine, since the dopamine antagonist haloperidol (1 mg/kg s.c.) induced no blockade. Injection of the GABA antogonist picrotoxin (100 ng) into the EP or STN induced sedation and catalepsy. The unilateral injection of muscimol and picrotoxin provoked contraversive and ipsiversive postural changes. Related behavioral effects were induced by GABAergic drugs injected in substantia nigra, zona reticulata (SNR). These data provide support for the new hypothesis that GABA in the EP, SNR and STN is important for the expression of behavior related to stimulation of dopamine receptors in the striatum. The effects may be induced by a dopamine activation of the descending striato-EP, striato-SNR GABAergic pathways and possibly also the pallido-STN GABAergic pathway. The findings suggest that in addition to a pathology of the dopamine system there may also be a GABAergic dysfunction in the efferent system of the basal ganglia localized to the EP, SNR and STN in diseases, such as parkinsonism, Huntington's chorea and possibly schizophrenia.  相似文献   

18.
Effects of GABA on gastric acid secretion and ulcer formation in rats   总被引:1,自引:0,他引:1  
The effects of gamma-aminobutyric acid (GABA), bicuculline and baclofen, orally and intraperitoneally (i.p.) administered, on the development of stress and pyloric ligation-induced gastric ulcers, were studied in rats. GABA, but not baclofen, significantly reduced the frequency and severity of both models as assessed by ulcer index, incidence and number of ulcers/animal. Gastric protection was dose-related in both experimental models and was completely antagonized by pretreatment with bicuculline methiodide, that blocks peripheral, but not central GABA receptors. All GABA effects were observed after oral and i.p. administration, but inhibition of gastric lesions was greater by the last route. Furthermore, GABA did not affect the acidity or the volume of gastric secretion in pylorus-ligated rats. Consequently its antiulcer activity appears to be mediated by factors unrelated to gastric acid secretion. Since the entry of GABA across blood-brain barrier is greatly restricted it may be concluded that stimulation of peripheral GABA receptors is primarily involved in its antiulcer action.  相似文献   

19.
Previously, we have demonstrated that intrathecally (i.t.) administered corticotropin-releasing factor (CRF) in mice produces stimulus-specific antinociception and modulation of morphine-induced antinociception by mechanisms involving spinal kappa opioid receptors. Recently, we also have found that CRF releases immunoreactive dynorphin A, a putative endogenous kappa opioid receptor agonist, from superfused mice spinal cords in vitro. Dynorphin A administered intracerebroventricularlly (i.c.v.) to mice has been shown to modulate the expression of morphine tolerance. In the present study, the possible modulatory effects of i.t. administered CRF as well as dynorphin A on morphine tolerance were studied in an acute tolerance model. Subcutaneous administration of 100 mg/kg of morphine sulfate (MS) to mice caused an acute tolerance to morphine-induced antinociception. The antinociceptive ED50 of MS was increased from 4.4 mg/kg (naive mice) to 17.9 mg/kg (4 hours after the injection of 100 mg/kg MS). To study the modulatory effects of spinally administered CRF and dynorphin A on the expression of morphine tolerance, CRF and dynorphin A were injected i.t. at 15 min and 5 min, respectively, before testing the tolerant mice by the tail-flick assay. The antinociceptive ED50 of MS in tolerant mice was decreased to 8.8 mg/kg and 7.1 mg/kg, respectively, after i.t. administration of CRF (0.1 nmol) and dynorphin A (0.2 nmol). In contrast, 0.5 nmol of alpha-helical CRF (9-41), a CRF antagonist and 0.4 nmol of norbinaltorphimine, a highly selective kappa opioid receptor antagonist, when administered i.t. at 15 min before the tail-flick test in tolerant mice, increased the antinociceptive ED50 of MS to 56.6 mg/kg and 88.8 mg/kg, respectively. These data confirmed the modulatory effect of dynorphin A on morphine tolerance and suggested that CRF, which releases dynorphin A in several central nervous system regions, also plays a modulatory role in the expression of morphine tolerance.  相似文献   

20.
The intracerebroventricular (i.c.v.) injection of antisera directed against different sequences of Gs alpha to mice enhanced the antinociceptive potency of the opioids morphine, beta h-endorphin-(1-31) and of the alpha 2-agonist clonidine when studied 24 h later in the tail-flick test. The activity of DAGO, DADLE, DPDPE and [D-Ala2]-Deltorphin II remained unchanged after that treatment. Cholera toxin (0.5 microgram/mouse, i.c.v.), agent that impairs the receptor regulation of Gs transducer proteins promoted comparable changes in the supraspinal analgesia induced by these substances. Six days after a single i.c.v. injection (0.5 microgram/mouse) of pertussis toxin the antinociceptive activity of all the opioids and clonidine appeared diminished. It is concluded that opioids and clonidine promote analgesia after binding to receptors functionally coupled to Gi/G(o) proteins, moreover, the activity of morphine, beta-endorphin and clonidine in this test seems to be counteracted by a process involving activation of Gs alpha transducer proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号