首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Women have less muscle than men but lose it more slowly during aging. To discover potential underlying mechanism(s) for this we evaluated the muscle protein synthesis process in postabsorptive conditions and during feeding in twenty-nine 65-80 year old men (n = 13) and women (n = 16). We discovered that the basal concentration of phosphorylated eEF2(Thr56) was approximately 40% less (P<0.05) and the basal rate of MPS was approximately 30% greater (P = 0.02) in women than in men; the basal concentrations of muscle phosphorylated Akt(Thr308), p70s6k(Thr389), eIF4E(Ser209), and eIF4E-BP1(Thr37/46) were not different between the sexes. Feeding increased (P<0.05) Akt(Thr308) and p70s6k(Thr389) phosphorylation to the same extent in men and women but increased (P<0.05) the phosphorylation of eIF4E(Ser209) and eIF4E-BP1(Thr37/46) in men only. Accordingly, feeding increased MPS in men (P<0.01) but not in women. The postabsorptive muscle mRNA concentrations for myoD and myostatin were not different between sexes; feeding doubled myoD mRNA (P<0.05) and halved that of myostatin (P<0.05) in both sexes. Thus, there is sexual dimorphism in MPS and its control in older adults; a greater basal rate of MPS, operating over most of the day may partially explain the slower loss of muscle in older women.  相似文献   

3.
4.
AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.  相似文献   

5.
Ser/Thr phosphorylation of insulin receptor substrate IRS-1 regulates insulin signaling, but the relevant phosphorylated residues and their potential functions during insulin-stimulated signal transduction are difficult to resolve. We used a sequence-specific polyclonal antibody directed against phosphorylated Ser(302) to study IRS-1-mediated signaling during insulin and insulin-like growth factor IGF-I stimulation. Insulin or IGF-I stimulated phosphorylation of Ser(302) in various cell backgrounds and in murine muscle. Wortmannin or rapamycin inhibited Ser(302) phosphorylation, and amino acids or glucose stimulated Ser(302) phosphorylation, suggesting a role for the mTOR cascade. The Ser(302) kinase associates with IRS-1 during immunoprecipitation, but its identity is unknown. The NH(2)-terminal c-Jun kinase did not phosphorylate Ser(302). Replacing Ser(302) with alanine significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and p85 binding and reduced insulin-stimulated phosphorylation of p70(S6K), ribosomal S6 protein, and 4E-BP1; however, this mutation had no effect on insulin-stimulated Akt or glycogen synthase kinase 3beta phosphorylation. Replacing Ser(302) with alanine reduced insulin/IGF-I-stimulated DNA synthesis. We conclude that Ser(302) phosphorylation integrates nutrient availability with insulin/IGF-I signaling to promote mitogenesis and cell growth.  相似文献   

6.
Previous studies showed that insulin antagonizes AMP-activated protein kinase activation by ischemia and that protein kinase B might be implicated. Here we investigated whether the direct phosphorylation of AMP-activated protein kinase by protein kinase B might participate in this effect. Protein kinase B phosphorylated recombinant bacterially expressed AMP-activated protein kinase heterotrimers at Ser(485) of the alpha1-subunits. In perfused rat hearts, phosphorylation of the alpha1/alpha2 AMP-activated protein kinase subunits on Ser(485)/Ser(491) was increased by insulin and insulin pretreatment decreased the phosphorylation of the alpha-subunits at Thr(172) in a subsequent ischemic episode. It is proposed that the effect of insulin to antagonize AMP-activated protein kinase activation involves a hierarchical mechanism whereby Ser(485)/Ser(491) phosphorylation by protein kinase B reduces subsequent phosphorylation of Thr(172) by LKB1 and the resulting activation of AMP-activated protein kinase.  相似文献   

7.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   

8.
Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. So far, only few specific phosphorylation sites of PP1 regulatory subunit 12A (PPP1R12A) have been shown to regulate the PP1 activity. The effect of insulin on PPP1R12A phosphorylation is largely unknown. Utilizing a mass spectrometry based phosphorylation identification and quantification approach, we identified 21 PPP1R12A phosphorylation sites (7 novel sites, including Ser20, Thr22, Thr453, Ser478, Thr671, Ser678, and Ser680) and quantified 16 of them under basal and insulin stimulated conditions in hamster ovary cells overexpressing the insulin receptor (CHO/IR), an insulin sensitive cell model. Insulin stimulated the phosphorylation of PPP1R12A significantly at Ser477, Ser478, Ser507, Ser668, and Ser695, while simultaneously suppressing the phosphorylation of PPP1R12A at Ser509 (more than 2-fold increase or decrease compared to basal). Our data demonstrate that PPP1R12A undergoes insulin stimulated/suppressed phosphorylation, suggesting that PPP1R12A phosphorylation may play a role in insulin signal transduction. The novel PPP1R12A phosphorylation sites as well as the new insulin-responsive phosphorylation sites of PPP1R12A in CHO/IR cells provide targets for investigation of the regulation of PPP1R12A and the PPP1R12A-PP1cδ complex in insulin action and other signaling pathways in other cell models, animal models, and humans.  相似文献   

9.
Greene MW  Garofalo RS 《Biochemistry》2002,41(22):7082-7091
Insulin receptor substrates (IRS) 1 and 2 are phosphorylated on serine/threonine (Ser/Thr) residues in quiescent cells (basal phosphorylation), and phosphorylation on both Ser/Thr and tyrosine residues is increased upon insulin stimulation. To determine whether basal Ser/Thr phosphorylation of IRS proteins influences insulin receptor catalyzed tyrosine phosphorylation, recombinant FLAG epitope-tagged IRS-1 (F-IRS-1) and IRS-2 (F-IRS-2) were expressed, purified, and subjected to both dephosphorylation and hyperphosphorylation prior to phosphorylation by the insulin receptor kinase. As expected, hyperphosphorylation of F-IRS-1 and F-IRS-2 by GSK3beta decreased their subsequent phosphorylation on tyrosine residues by the insulin receptor. Surprisingly, however, dephosphorylation of the basal Ser/Thr phosphorylation sites impaired subsequent phosphorylation on tyrosine, suggesting that basal Ser/Thr phosphorylation of F-IRS-1 and F-IRS-2 plays a positive role in phosphorylation by the insulin receptor tyrosine kinase. Dephosphorylation of basal Ser/Thr sites on F-IRS-1 also significantly reduced tyrosine phosphorylation by the IGF-1 receptor. However, dephosphorylation of F-IRS-2 significantly increased phosphorylation by the IGF-1 receptor, suggesting that basal phosphorylation of IRS-2 has divergent effects on its interaction with the insulin and IGF-1 receptors. Phosphorylation of endogenous IRS-1 and IRS-2 from 3T3-L1 adipocytes was modulated in a similar manner. IRS-1 and IRS-2 from serum-fed cells were hyperphosphorylated, and dephosphorylation induced either by serum deprivation or by alkaline phosphatase treatment after immunoprecipitation led to an increase in tyrosine phosphorylation by the insulin receptor. Dephosphorylation of IRS-1 and IRS-2 immunoprecipitated from serum-deprived cells, however, resulted in inhibition of tyrosine phosphorylation by the insulin receptor. These data suggest that Ser/Thr phosphorylation can have both a positive and a negative regulatory role on tyrosine phosphorylation of IRS-1 and IRS-2 by insulin and IGF-1 receptors.  相似文献   

10.
The role of essential amino acids (AA) on protein synthesis via the mTOR pathway was studied in murine mammary epithelial cells cultured under lactogenic conditions. Leu, Ile, and Val increased S6K1 phosphorylation compared to that measured in AA-deprived cells. Trp, Phe, and Met had no effect. Surprisingly, Lys, His, and Thr inhibited S6K1 phosphorylation in both murine and bovine mammary cells. Thr exhibited the most potent inhibition, being the only amino acid that competed with Leu's positive role. In non-deprived cells, there was no observable effect of Lys, His, or Thr on S6K1 phosphorylation at concentrations up to five times those in the medium. However, their addition as a mix revealed a synergistic negative effect. Supplementation of Lys, His, and Thr abrogated mTOR Ser 2448 phosphorylation, with no effect on Akt Ser 473-an mTORC2 target. This confirms specific mTORC1 regulation of S6K1 phosphorylation. The individual supplementation of Lys, His, and Thr maintained a low level of IRS-1 phosphorylation, which was dose-dependently increased by their combined addition. Thus, in parallel to inhibiting S6K1 activity, these AA may act synergistically to activate an additional kinase, phosphorylating IRS-1 via an S6K1-independent pathway. In cultures supplemented by Lys, His, and Thr, cellular protein synthesis decreased by up to 65%. A more pronounced effect was observed on beta-casein synthesis. These findings indicate that positive and negative signaling from AA to the mTOR pathway, combined with modulation of insulin sensitization, mediate the synthesis rates of total and specific milk proteins in mammary epithelial cells.  相似文献   

11.
Mechanism of activation of protein kinase B by insulin and IGF-1.   总被引:53,自引:1,他引:52       下载免费PDF全文
Insulin activated endogenous protein kinase B alpha (also known as RAC/Akt kinase) activity 12-fold in L6 myotubes, while after transfection into 293 cells PKBalpha was activated 20- and 50-fold in response to insulin and IGF-1 respectively. In both cells, the activation of PKBalpha was accompanied by its phosphorylation at Thr308 and Ser473 and, like activation, phosphorylation of both of these residues was prevented by the phosphatidylinositol 3-kinase inhibitor wortmannin. Thr308 and/or Ser473 were mutated to Ala or Asp and activities of mutant PKBalpha molecules were analysed after transfection into 293 cells. The activity of wild-type and mutant PKBalpha was also measured in vitro after stoichiometric phosphorylation of Ser473 by MAPKAP kinase-2. These experiments demonstrated that activation of PKBalpha by insulin or insulin-like growth factor-1 (IGF-1) results from phosphorylation of both Thr308 and Ser473, that phosphorylation of both residues is critical to generate a high level of PKBalpha activity and that the phosphorylation of Thr308 in vivo is not dependent on phosphorylation of Ser473 or vice versa. We propose a model whereby PKBalpha becomes phosphorylated and activated in insulin/IGF-1-stimulated cells by an upstream kinase(s).  相似文献   

12.
Inhibitor-2 (I-2) is a regulator of protein phosphatase type-1 (PP1), known to be phosphorylated in vitro by multiple kinases. In particular Thr72 is a Thr-Pro phosphorylation site conserved from yeast to human, but there is no evidence that this phosphorylation responds to any physiological signals. Here, we used electrophoretic mobility shift and immunoblotting with a site-specific phospho-Thr72 antibody to establish Thr72 phosphorylation in HeLa cells and show a 25-fold increase in phosphorylation during mitosis. Mass spectrometry demonstrated I-2 in actively growing HeLa cells was also phosphorylated at three other sites, Ser120, Ser121, and an additional Ser located between residues 70 and 90. In vitro kinase assays using recombinant I-2 as a substrate showed that the Thr72 kinase(s) was activated during mitosis, and sensitivity to kinase inhibitors indicated that the principal I-2 Thr72 kinase was not GSK3 but instead a member of the cyclin-dependent protein kinase family. Immunocytochemistry confirmed Thr72 phosphorylation of I-2 during mitosis, with peak intensity at prophase, and revealed subcellular concentration of the phospho-Thr72 I-2 at centrosomes. Together, the data show dynamic changes in I-2 phosphorylation during mitosis and localization of phosphorylated I-2 at centrosomes, suggesting involvement in mammalian cell division.  相似文献   

13.
Chronic hepatitis C virus (HCV) infection has a significantly increased prevalence of type 2 diabetes mellitus (T2DM). Insulin resistance is a critical component of T2DM pathogenesis. Several mechanisms are likely to be involved in the pathogenesis of HCV-related insulin resistance. Since we and others have previously observed that HCV core protein activates c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase, we examined the contribution of these pathways to insulin resistance in hepatocytes. Our experimental findings suggest that HCV core protein alone or in the presence of other viral proteins increases Ser(312) phosphorylation of the insulin receptor substrate-1 (IRS-1). Hepatocytes infected with cell culture-grown HCV genotype 1a or 2a displayed a significant increase in the Ser(473) phosphorylation status of the Ser/Thr kinase protein kinase B (Akt/PKB), while Thr(308) phosphorylation was not significantly altered. HCV core protein-mediated Ser(312) phosphorylation of IRS-1 was inhibited by JNK (SP600125) and phosphatidylinositol-3 kinase (LY294002) inhibitors. A functional assay also suggested that hepatocytes expressing HCV core protein alone or infected with cell culture-grown HCV exhibited a suppression of 2-deoxy-d-[(3)H]glucose uptake. Inhibition of the JNK signaling pathway significantly restored glucose uptake despite HCV core expression in hepatocytes. Taken together, our results demonstrated that HCV core protein increases IRS-1 phosphorylation at Ser(312) which may contribute in part to the mechanism of insulin resistance.  相似文献   

14.
To investigate the association between hyperinsulinemia and cardiac hypertrophy, we treated rats with insulin for 7 wk and assessed effects on myocardial growth, vascularization, and fibrosis in relation to the expression of angiotensin II receptors (AT-R). We also characterized insulin signaling pathways believed to promote myocyte growth and interact with proliferative responses mediated by G protein-coupled receptors, and we assessed myocardial insulin receptor substrate-1 (IRS-1) and p110 alpha catalytic and p85 regulatory subunits of phospatidylinositol 3 kinase (PI3K), Akt, MEK, ERK1/2, and S6 kinase-1 (S6K1). Left ventricular (LV) geometry and performance were evaluated echocardiographically. Insulin decreased AT1a-R mRNA expression but increased protein levels and increased AT2-R mRNA and protein levels and phosphorylation of IRS-1 (Ser374/Tyr989), MEK1/2 (Ser218/Ser222), ERK1/2 (Thr202/Tyr204), S6K1 (Thr421/Ser424/Thr389), Akt (Thr308/Thr308), and PI3K p110 alpha but not of p85 (Tyr508). Insulin increased LV mass and relative wall thickness and reduced stroke volume and cardiac output. Histochemical examination demonstrated myocyte hypertrophy and increases in interstitial fibrosis. Metoprolol plus insulin prevented the increase in relative wall thickness, decreased fibrosis, increased LV mass, and improved function seen with insulin alone. Thus our data demonstrate that chronic hyperinsulinemia decreases AT1a-to-AT2 ratio and increases MEK-ERK1/2 and S6K1 pathway activity related to hypertrophy. These changes might be crucial for increased cardiovascular growth and fibrosis and signs of impaired LV function.  相似文献   

15.
The mammalian target of rapamycin (mTOR) is a key regulator of protein translation. Signaling via mTOR is increased by growth factors but decreased during nutrient deprivation. Previous studies have identified Ser2448 as a nutrient-regulated phosphorylation site located in the mTOR catalytic domain, insulin stimulates Ser2448 phosphorylation via protein kinase B (PKB), while Ser2448 phosphorylation is attenuated with amino acid starvation. Here we have identified Thr2446 as a novel nutrient-regulated phosphorylation site on mTOR. Thr2446 becomes phosphorylated when CHO-IR cells are nutrient-deprived, but phosphorylation is reduced by insulin stimulation. Nutrient deprivation activates AMP-activated protein kinase (AMPK). To test whether this could be involved in regulating phoshorylation of mTOR, we treated cultured murine myotubes with 5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) or dinitrophenol (DNP). Both treatments activated AMPK and also caused a concomitant increase in phosphorylation of Thr2446 and a parallel decrease in insulin's ability to phosphorylate p70 S6 kinase. In vitro kinase assays using peptides based on the sequence in amino acids 2440-2551 of mTOR found that PKB and AMPK are capable of phosphorylating sites in this region. However, phosphorylation by PKB is restricted when Thr2446 is mutated to an acidic residue mimicking phosphorylation. Conversely, AMP-kinase-induced phosphorylation is reduced when Ser2448 is phosphorylated. These data suggest differential phosphorylation Thr2446 and Ser2448 could act as a switch mechanism to integrate signals from nutrient status and growth factors to control the regulation of protein translation.  相似文献   

16.
Regulation of insulin receptor substrate (IRS)-2 expression is critical to beta-cell survival, but the mechanisms that control this are complex and undefined. Here in pancreatic beta-cells (INS-1), chronic exposure (>8 h) to 15 mm glucose and/or 5 nm IGF-1, increased Ser/Thr phosphorylation of IRS-2, which correlated with decreased IRS-2 levels. This glucose/IGF-1-induced decrease in IRS-2 levels was prevented by the proteasomal inhibitor, lactacystin. In addition, the glucose/IGF-1-induced increase in Ser/Thr phosphorylation of IRS-2 and the subsequent decrease in INS-1 cell IRS-2 protein levels was thwarted by the mammalian target of rapamycin(mTOR) inhibitor, rapamycin. Moreover, adenoviral-mediated expression of constitutively active mTOR (mTORDelta) further increased glucose/IGF-1-induced Ser/Thr phosphorylation of IRS-2 and decreased IRS-2 protein levels, whereas adenoviral-mediated expression of "kinase-dead" mTOR (mTOR-KD) conversely reduced Ser/Thr phosphorylation of IRS-2 and maintained IRS-2 protein levels. In adenoviral-infected beta-cells expressing mTORDelta, the decrease in IRS-2 protein levels was also prevented by rapamycin or lactacystin, further indicating a proteasomal mediated degradation of IRS-2 mediated via mTOR-induced Ser/Thr phosphorylation of IRS-2. Finally, we found that chronic activation of mTOR leading to decreased levels of IRS-2 in INS-1 cells led to a significant decrease in PKB activation and consequently increased beta-cell apoptosis. Thus, chronic activation of mTOR by glucose (and/or IGF-1) in beta-cells leads to increased Ser/Thr phosphorylation of IRS-2 that targets it for proteasomal degradation, resulting in decreased IRS-2 expression and increased beta-cell apoptosis. This may be a contributing mechanism as to how beta-cell mass is decreased by chronic hyperglycemia in the pathogenesis of type-2 diabetes.  相似文献   

17.
Exhaustive and chronic physical exercise leads to peripheral inflammation, which is one of the molecular mechanisms responsible for the impairment of the insulin signaling pathway in the heart. Recently, 3 different running overtraining models performed downhill (OTR/down), uphill (OTR/up), and without inclination (OTR) increased the serum levels of proinflammatory cytokines. This proinflammatory status induced insulin signaling impairment in the skeletal muscle; however, the response of this signaling pathway in the cardiac muscle of overtrained mice was still unknown. Thus, we investigated the effects of OTR/down, OTR/up, and OTR protocols on the protein levels of phosphorylation of insulin receptor β (pIRβ) (Tyr), phosphorylation of protein kinase B (pAkt) (Ser473), plasma membrane glucose transporter-1 (GLUT1) and GLUT4, phosphorylation of insulin receptor substrate-1 (pIRS-1) (Ser307), phosphorylation of IκB kinase α/β) (pIKKα/β (Ser180/181), phosphorylation of p38 mitogen-activated protein kinase (p-p38MAPK) (Thr180/Tyr182), phosphorylation of stress-activated protein kinases-Jun amino-terminal kinases (pSAPK-JNK) (Thr183/Tyr185), and glycogen content in mice hearts. The rodents were divided into naïve (N, sedentary mice), control (CT, sedentary mice submitted to performance evaluations), trained (TR, performed the training protocol), OTR/down, OTR/up, and OTR groups. After the grip force test, the cardiac muscles (ie, left ventricle) were removed and used for immunoblotting and histology. Although the OTR/up and OTR groups exhibited higher cardiac levels of pIRβ (Tyr), only the OTR group exhibited higher cardiac levels of pAkt (Ser473) and plasma membrane GLUT4. On the contrary, the OTR/down group exhibited higher cardiac levels of pIRS-1 (Ser307). The OTR model enhanced the cardiac insulin signaling pathway. All overtraining models increased the left ventricle glycogen content, with this probably acting as a compensatory organ in response to skeletal muscle insulin signaling impairment.  相似文献   

18.
Incubation of cells with insulin leads to a transient rise in Tyr phosphorylation of insulin receptor substrate (IRS) proteins, accompanied by elevation in their Ser(P)/Thr(P) content and their dissociation from the insulin receptor (IR). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, selectively prevented the increase in Ser(P)/Thr(P) content of IRS-1, its dissociation from IR, and the decrease in its Tyr(P) content following 60 min of insulin treatment. Four conserved phosphorylation sites within the phosphotyrosine binding/SAIN domains of IRS-1 and IRS-2 served as in vitro substrates for protein kinase B (PKB), a Ser/Thr kinase downstream of phosphatidylinositol 3-kinase. Furthermore, PKB and IRS-1 formed stable complexes in vivo, and overexpression of PKB enhanced Ser phosphorylation of IRS-1. Overexpression of PKB did not affect the acute Tyr phosphorylation of IRS-1; however, it significantly attenuated its rate of Tyr dephosphorylation following 60 min of treatment with insulin. Accordingly, overexpression of IRS-1(4A), lacking the four potential PKB phosphorylation sites, markedly enhanced the rate of Tyr dephosphorylation of IRS-1, while inclusion of vanadate reversed this effect. These results implicate a wortmannin-sensitive Ser/Thr kinase, different from PKB, as the kinase that phosphorylates IRS-1 and acts as the feedback control regulator that turns off insulin signals by inducting the dissociation of IRS proteins from IR. In contrast, insulin-stimulated PKB-mediated phosphorylation of Ser residues within the phosphotyrosine binding/SAIN domain of IRS-1 protects IRS-1 from the rapid action of protein-tyrosine phosphatases and enables it to maintain its Tyr-phosphorylated active conformation. These findings implicate PKB as a positive regulator of IRS-1 functions.  相似文献   

19.
To test the hypothesis that creatine supplementation would enhance the anabolic responses of muscle cell signaling and gene expression to exercise, we studied nine subjects who received either creatine or a placebo (maltodextrin) for 5 days in a double-blind fashion before undergoing muscle biopsies: at rest, immediately after exercise (10 x 10 repetitions of one-leg extension at 80% 1 repetition maximum), and 24 and 72 h later (all in the morning after fasting overnight). Creatine supplementation decreased the phosphorylation state of protein kinase B (PKB) on Thr308 at rest by 60% (P < 0.05) and that of eukaryotic initiation factor 4E-binding protein on Thr37/46 (4E-BP1) by 30% 24 h postexercise (P < 0.05). Creatine increased mRNA for collagen 1 (alpha(1)), glucose transporter-4 (GLUT-4), and myosin heavy chain I at rest by 250%, 45%, and 80%, respectively, and myosin heavy chain IIA (MHCIIA) mRNA immediately after exercise by 70% (all P < 0.05). Immediately after exercise, and independent of creatine, mRNA for muscle atrophy F-box (MAFbx), MHCIIA, peroxisome proliferator-activated receptor gamma coactivator-1alpha, and interleukin-6 were upregulated (60-350%; P < 0.05); the phosphorylation state of p38 both in the sarcoplasm and nucleus were increased (12- and 25-fold, respectively; both P < 0.05). Concurrently, the phosphorylation states of PKB (Thr308) and 4E-BP1 (Thr37/46) were decreased by 50% and 75%, respectively (P < 0.05). Twenty-four hours postexercise, MAFbx, myostatin, and GLUT-4 mRNA expression decreased below preexercise values (-35 to -50%; P < 0.05); calpain 1 mRNA increased 70% 72 h postexercise (P < 0.05) and at no other time. In conclusion, 5 days of creatine supplementation do not enhance anabolic signaling but increase the expression of certain targeted genes.  相似文献   

20.
AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from AMPK alpha2 knockout (KO), AMPK gamma3 KO, and respective wild-type (WT) littermates (C57BL/6) were incubated in the presence of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR), insulin, or AICAR plus insulin. Phosphorylation of AMPK, Akt, and mTOR-associated signaling proteins were assessed. Insulin increased Akt Ser473 phosphorylation (P < 0.01), irrespective of genotype or presence of AICAR. AICAR increased phosphorylation of AMPK Thr172 (P < 0.01) in WT but not KO mice. Insulin stimulation increased phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46) (P < 0.01) in WT, AMPK alpha2 KO, and AMPK gamma3 KO mice. However, in WT mice, preincubation with AICAR completely inhibited insulin-induced phosphorylation of mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued in extensor digitorum longus muscle from either alpha2 or gamma3 AMPK KO mice, indicating functional alpha2 and gamma3 subunits of AMPK are required for the reduction in mTOR signaling. AICAR alone was without effect on basal phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46). In conclusion, functional alpha2 and gamma3 AMPK subunits are required for AICAR-induced inhibitory effects on mTOR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号