首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly specific structures can be designed by inserting dehydro-residues into peptide sequences. The conformational preferences of branched beta-carbon residues are known to be different from other residues. As an implication it was expected that the branched beta-carbon dehydro-residues would also induce different conformations when substituted in peptides. So far, the design of peptides with branched beta-carbon dehydro-residues at (i + 1) position has not been reported. It may be recalled that the nonbranched beta-carbon residues induced beta-turn II conformation when placed at (i + 2) position while branched beta-carbon residues induced beta-turn III conformation. However, the conformation of a peptide with a nonbranched beta-carbon residue when placed at (i + 1) position was not found to be unique as it depended on the stereochemical nature of its neighbouring residues. Therefore, in order to induce predictably unique structures with dehydro-residues at (i + 1) position, we have introduced branched beta-carbon dehydro-residues instead of nonbranched beta-carbon residues and synthesized two peptides: (I) N-Carbobenzoxy-DeltaVal-Ala-Leu-OCH3 and (II) N-Carbobenzoxy-DeltaIle-Ala-Leu-OCH3 with DeltaVal and DeltaIle, respectively. The crystal structures of peptides (I) and (II) have been determined and refined to R-factors of 0.065 and 0.063, respectively. The structures of both peptides were essentially similar. Both peptides adopted type II beta-turn conformations with torsion angles; (I): phi1 = -38.7 (4) degrees, psi1 = 126.0 (3) degrees; phi2 = 91.6 (3) degrees, psi2 = -9.5 (4) degrees and (II): phi1 = -37.0 (6) degrees, psi1 = 123.6 (4) degrees, phi2 = 93.4 (4), psi2 = -11.0(4) degrees respectively. Both peptide structures were stabilized by intramolecular 4-->1 hydrogen bonds. The molecular packing in both crystal structures were stabilized in each by two identical hydrogen bonds N1...O1' (-x, y + 1/2, -z) and N2...O2' (-x + 1, y + 1/2, -z) and van der Waals interactions.  相似文献   

2.
Polyproline II (PPII) is reported to be a dominant conformation in the unfolded state of peptides, even when no prolines are present in the sequence. Here we use isothermal titration calorimetry (ITC) to investigate the PPII bias in the unfolded state by studying the binding of the SH3 domain of SEM-5 to variants of its putative PPII peptide ligand, Sos. The experimental system is unique in that it provides direct access to the conformational entropy change of the substituted amino acids. Results indicate that the denatured ensemble can be characterized by at least two thermodynamically distinct states, the PPII conformation and an unfolded state conforming to the previously held idea of the denatured state as a random collection of conformations determined largely by hard-sphere collision. The probability of the PPII conformation in the denatured states for Ala and Gly were found to be significant, approximately 30% and approximately 10%, respectively, resulting in a dramatic reduction in the conformational entropy of folding.  相似文献   

3.
The synthesis and the solution behavior of the linear peptides containing a beta-homo (beta-H) leucine residue-Boc-Leu-beta-HLeu-Leu-OMe, Boc-beta-HLeu-Leu-beta-HLeu-Leu-OMe, and Boc-Leu-beta-HLeu-Leu-beta-HLeu-Leu-OMe-as well as the solid structure of the tripeptide, are reported. The conformational behavior of the peptides was investigated in solution by two-dimensional nmr. Our data support the existence in solution with different families of conformers in rapid interchange. The crystals of the tripeptide are orthorhombic, space group P2(1)2(1)2, with a = 15.829(1) A, b = 29.659(1) A, c = 6.563(1) A, and Z = 4. The structure has been solved by direct methods and refined to final R1 and wR2 indexes of 0.0530 and 0.1436 for 2420 reflections with I > 2sigma(I). In the solid state, the tripeptide does not present intramolecular H bonds, and the peptide backbone of the two leucine residues adopts a quasi-extended conformation. For the beta-HLeu residue, the backbone conformation is specified by the torsion angles straight phi(2) = -120.9(4) degrees, mu(2) = 56.7(4) degrees, psi(3) = -133.2(4) degrees. The side chains of the three residues assume the same conformation (g(-), g(-), trans), and all peptide bonds, except the urethane group at the N-terminus, are in the trans conformation. Preliminary conformational energy calculations carried out on the Ac-NH-beta-HAla-NHMe underline that the conformations with mu angle equal to 180 degrees and 60 degrees assume lower energy with respect to the others. In addition, we found a larger conformational freedom for the psi angle with respect to the straight phi angle.  相似文献   

4.
The conformational behaviour of delta Ala has been investigated by quantum mechanical method PCILO in the model dipeptide Ac-delta Ala-NHMe and in the model tripeptides Ac-X-delta Ala-NHMe with X = Gly, Ala, Val, Leu, Abu and Phe and is found to be quite different. The computational results suggest that in the model tripeptides the most stable conformation corresponds to phi 1 = -30 degrees, psi 1 = 120 degrees and phi 2 = psi 2 = 30 degrees in which the > C = 0 of the acetyl group is involved in hydrogen bond formation with N-H of the amide group. Similar results were obtained for the conformational behaviour of D-Ala in Ac-D-Ala-NHMe and Ac-Ala-D-Ala-NHMe. The conformational behaviour of the amino acids delta Ala, D-Ala, Val and Aib in model tripeptides have been utilized in the designing of left handed helical peptides. It is shown that the peptide HCO-(Ala-D-Ala)3-NHMe can adopt both left and right handed helix whereas in the peptide Ac-(Ala-delta Ala)3-NHMe the lowest energy conformer is beta-bend ribbon structure. Left handed helical structure with phi = 30 degrees, psi = 60 degrees for D-Ala residues and phi = psi = 30 degrees for delta Ala is found to be more stable by 4 kcal mole-1 than the corresponding right handed helical structure for the peptide Ac-(D-Ala-delta Ala)3-NHMe. In both the peptides Ac-(Val-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe the most stable conformer is the left handed helix. Comparisons of results for Ac-(Ala-delta Ala)3-NHMe and Ac(Val-delta Ala)3-NHMe and Ac-(D-Ala-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe also reveal that the Val residues facilitate the population of 3(10) left handed helix over the other conformers. It is also shown that the conformational behaviour of Aib residue depends on the chirality of neighbouring amino acids, i.e. Ac-(Aib-Ala)3-NHMe adopts right handed helical structure whereas Ac-(Aib-D-Ala)3-NHMe is found to be in left handed helical structure.  相似文献   

5.
The crystal structures of two diastereomeric alpha,beta-dehydrobutyrine peptides Ac-Pro-(Z)-DeltaAbu-NHMe (I) and Ac-Pro-(E)-DeltaAbu-NHMe (II) have been determined. Both dehydropeptides adopt betaI-turn conformation characterized by the pairs of (phi(i+1), psi(i+1)) and (phi(i+2), psi(i+2)) angles as -66, -19, -97, 11 degrees for I and -59, -27, -119, 29 degrees for II. In each peptide, the betaI turn is stabilized by (i + 3) --> i intramolecular hydrogen bonds with N...O distance of 3.12 A for I and 2.93 A for II. These structures have been compared to the crystal structures of homologous peptides Ac-Pro-DeltaVal-NHMe and Ac-Pro-DeltaAla-NHMe. Theoretical analyses by DFT/B3LYP/6-31 + G** method of conformers formed by these four peptides and by the saturated peptide Ac-Pro-Ala-NHMe revealed that peptides with a (Z) substituent at the C(beta) (i+2) atom of dehydroamino acid, i.e. Ac-Pro-DeltaVal-NHMe and Ac-Pro-(Z)-DeltaAbu-NHMe, predominantly form beta turns, both in vacuo and in polar environment. The tendency to adopt beta-turn conformation is much weaker for the peptides lacking the (Z) substituent, Ac-Pro-(E)-DeltaAbu-NHMe and Ac-Pro-DeltaAla-NHMe. The latter adopts a semi-extended or an extended conformation in every polar environment, including a weakly polar solvent. The saturated peptide Ac-Pro-Ala-NHMe in vacuo prefers a beta-turn conformation, but in polar environment the differences between various conformers are small. The role of pi-electron correlation and intramolecular hydrogen bonds interaction in stabilizing the hairpin structures are discussed.  相似文献   

6.
The conformational behaviour of deltaZPhe has been investigated in the model dipeptide Ac-deltaZPhe-NHMe and in the model tripeptides Ac-X-deltaZPhe-NHMe with X=Gly,Ala,Val,Leu,Abu,Aib and Phe and is found to be quite different. In the model tripeptides with X=Ala,Val,Leu,Abu,Phe the most stable structure corresponds to phi1=-30 degrees, psi1=120 degrees and phi2=psi2=30 degrees. This structure is stabilized by the hydrogen bond formation between C=O of acetyl group and the NH of the amide group, resulting in the formation of a 10-membered ring but not a 3(10) helical structure. In the peptides Ac-Aib-deltaZPhe-NHMe and Ac-(Aib-deltaZPhe)3-NHMe, the helical conformers with phi = +/-30 degrees, psi = +/-60 degrees for Aib residue and phi=psi= +/-30 degrees for deltaZPhe are predicted to be most stable. The computational studies for the positional preferences of deltaZPhe residue in the peptide containing one deltaZPhe and nine Ala residues reveal the formation of a 3(10) helical structure in all the cases with terminal preferences for deltaZPhe. The conformational behaviour of Ac-(deltaZPhe)n-NHMe with n< or =4 is predicted to be very labile. With n > 4, degenerate conformational states with phi,psi values of 0 degrees +/- 90 degrees adopt helical structures which are stabilized by carbonyl-carbonyl interactions and the N-H-pi interactions between the amino group of every deltaZPhe residue with one C-C edge of its own phenyl ring. The results are in agreement with the experimental finding that screw sense of helix for peptides containing deltaZPhe residues is ambiguous in solution. The helical structures stabilized by hydrogen bond formation are found to be at least 3kCalmol(-1) less stable. Conformational studies have also been carried out for the peptide Ac-(deltaEPhe)6-NHMe and the peptide Ac-deltaAla-(deltaZPhe)6-NHMe containing deltaAla residue at the N-terminal. The N-H-pi interactions are absent in peptide Ac-(deltaEPhe)6-NHMe.  相似文献   

7.
Nandel FS  Khare B 《Biopolymers》2005,77(1):63-73
Conformational studies of the peptides constructed from achiral amino acid residues Aib and Delta(Z)Phe (I) Ac-Aib-Delta(Z)Phe-NHMe (II), and Ac-(Aib-Delta(Z)Phe)(3)-NHMe; peptides III-VI having L-Leu or D-Leu at either the N- or the C-terminal position and of peptides VII-X having Leu residues in different enantiomeric combinations at both the N- and the C-terminal positions in peptide II have been studied to design the peptide with the required helical sense. Peptide II, as expected, adopts degenerate left- and right-handed helical structures. It has been shown that the peptides IV and VI having D-Leu at either the N or the C terminus can be realized in the right-handed helical structure with the phi,psi values of -20 degrees and -60 degrees for the Aib/Delta(Z)Phe residues. L-Leu and D- Leu at both the terminals in peptides VII and VIII, respectively, have hardly any effect as both the left- and the right-handed structures are found to be degenerate. Peptides III and IX can be realized in right- and left-handed helical structures, respectively, in solvents of low polarity whereas peptides V and X are predicted to be in the right-handed helical structures stabilized by carbonyl-carbonyl interactions without the formation of hydrogen bonds. The conformational states with the phi,psi values of 0 degrees and -85 degrees in peptide V are characterized by rise per residue of 2.03 A, rotation per residue of 117.5 degrees , and 3.06 residues per turn. In all peptides having Leu residue at the N terminus, the methyl moiety of the acetyl group is involved in the CH/pi interactions with the Cepsilon--Cdelta edge of the aromatic ring of Delta(Z)Phe (3) and the amino group NH of Delta(Z)Phe is involved in the NH/pi interactions with its own aromatic ring. The CH(3) groups of the Aib residues are also involved in CH/pi interactions with the i + 1th and i + 3th Delta(Z)Phe's aromatic side chains.  相似文献   

8.
The delta selectivity of the opioid heptapeptides deltorphin I and II has been attributed to the C-terminal 'address' domain, the hydrophobic Val(5)-Val(6) residues apparently playing a topographical role. We now report the synthesis, opioid binding affinities, and a QSAR study of a series of peptides in which one of the valine side chains was altered. QSAR analyses included previously published models for a binding pocket interaction and an optimum size (Schullery, S.; Mohammedshah, T.; Makhlouf, H.; Marks, E.; Wilenkin, B.; Escobar, S.; Mousigian, C.; Heyl, D. Bioorg. Med. Chem. 1997, 5, 2221), and a new approach for backbone conformational effects using Langevin dynamics simulation (PM3 semi-empirical force field) of an isolated peptide fragment containing the side chain and flanking peptide bonds. No evidence is found of binding pocket interactions or optimum size for either the position-5 or -6 side chain. Rather, delta binding is generally disfavored while mu binding is either unaffected (position-5) or favored (position-6) by larger side chains. The dynamics results provide evidence of similar 'local' conformation roles for the positions 5 and 6 side chains. Specifically, delta binding is favored by side chains that maximize the extension of the backbone, measured as the through-space distance between peptide fragment ends, the angle between lines connecting the alpha-carbon with fragment ends, or the difference between the psi and phi peptide angles.  相似文献   

9.
Two synthetic peptides corresponding to the N- and C-terminal halves of a 23 amino acid sequence representing an immunodominant domain of the simian immunodeficiency virus of macaque origin (SIVmac) were examined for conformational preferences in aqueous solution by proton nuclear magnetic resonance methods. The two constituent peptides, termed A12-7 (Ala597-Ile-Glu-Lys-Tyr-Leu-Glu-Asp-Gln-Ala-Gln607) and A12-9 (Leu608-Asn-Ala-Trp-Gly-Cys-Ala-Phe-Arg-Gln-Val-Ser619), were found to contain a considerable conformational preference for states in which the backbone phi and psi angles populate the alpha region of the Ramachandran plot. Further, for peptide A12-9, the types and intensities of the nuclear Overhauser effect (NOE) connectivities between protons in the polypeptide backbone suggest that these states appear to include helical turns. The temperature dependence of the amide proton chemical shifts indicates that some degree of intramolecular hydrogen bonding occurs in these peptides. These results are consistent with a model in which immunogenic peptides which induce antibodies reactive with the intact protein from which the peptide sequence was derived contain conformational preferences in water solution for states other than the extended-chain forms typically found in "random coil" peptides.  相似文献   

10.
Based on the X-ray crystal structure of cAMP-dependent protein kinase (PKA) with the endogenous inhibitor PKI and the X-ray crystal structure of cyclin-dependent kinase 2 (CDK2) with a substrate peptide, a proposal is put forth that some protein kinases bind peptide substrates in their active sites in the poly-L-proline type II (PPII) conformation. In this work, PPII peptide mimics are evaluated as pseudosubstrate inhibitors of cGMP-dependent protein kinase (PKG) to explore if PKG also binds peptide substrates in the PPII conformation. Inhibition data of our PPII mimetics provide evidence that the P-1, P-2, and P-3 residues of substrate peptides bind in the PPII conformation (phi approximately -75 degrees, psi approximately 145 degrees). In addition, the inhibition data also suggest that the P-1, P-2, and P-3 residues in substrate peptides bind with a gauche(-) chi1 angle.  相似文献   

11.
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I'beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 --> 1 hydrogen bonds. In addition, a single 4 --> 1 hydrogen bond is also observed at the N-terminus. All five Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C(alpha)-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean tau values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively.  相似文献   

12.
Major histocompatibility (MHC) Class II cell surface proteins present antigenic peptides to the immune system. Class II structures in complex with peptides but not in the absence of peptide are known. Comparative molecular dynamics (MD) simulations of a Class II protein (HLA-DR3) with and without CLIP (invariant chain-associated protein) peptide were performed starting from the CLIP-bound crystal structure. Depending on the protonation of acidic residues in the P6 peptide-binding pocket the simulations stayed overall close to the start structure. The simulations without CLIP showed larger conformational fluctuations especially of alpha-helices flanking the binding cleft. Largest fluctuations without CLIP were observed in a helical segment near the peptide C-terminus binding region matching a segment recognized by antibodies specific for empty Class II proteins. Simulations on a Val86Tyr mutation that fills the peptide N-terminus binding P1 pocket or of a complex with a CLIP fragment (dipeptide) bound to P1 showed an unexpected long range effect. In both simulations the mobility not only of P1 but also of the entire binding cleft was reduced compared to simulations without CLIP. It correlates with the experimental finding that the CLIP fragment binding to P1 is sufficient to prevent antibody recognition specific for the empty form at a site distant from P1. The results suggest a mechanism how a local binding event of small peptides or of an exchange factor near P1 may promote peptide binding and exchange through a long range stabilization of the whole binding cleft in a receptive (near bound) conformation.  相似文献   

13.
Crystal structure analysis of a model peptide: Boc-beta-Ala-Aib-beta-Ala-NHCH3 (beta-Ala: 3-amino propionic acid; Aib: alpha-aminoisobutyric acid) revealed distinct conformational preferences for folded [phi approximately 136 degrees, mu approximately -62 degrees, psi approximately 100 degrees] and semifolded [phi approximately 83 degrees, mu approximately -177 degrees, psi approximately -117 degrees] structures of the N-and C-terminus beta-Ala residues, respectively. The overall folded conformation is stabilized by unusual Ni...H-Ni+1 and nonconventional C-H...O intramolecular hydrogen bonding interactions.  相似文献   

14.
Proline occurs frequently in transmembrane alpha-helices of transport and receptor proteins even though statistical surveys demonstrate the overwhelming preference of this residue for a non-alpha-helical, hydrophilic environment. As a result, membrane-buried proline has been proposed to be functionally important, with function arising from structural discontinuity or destabilization of the helix. Destabilization may occur by Pro-mediated conformational transitions between discrete states, and may be manifested in membrane protein systems through reversible processes such as channel opening and closing or signal transduction. In this study, computer modeling of a model transmembrane alpha-helix, (Ala)8-Leu-Pro-Phe-(Ala)8, in a medium of low polarity (dielectric = 2), is used to examine the occurrence and energetic accessibility of Pro-mediated conformational interconversions. Leu psi and chi 1, Pro psi, and Phe phi and chi 1 torsion angles were assigned random values so that a data base of 200 conformations for each of the cis and trans states was generated. The conformations were minimized and low-energy structures organized into families. This analysis demonstrated that the most populated lowest energy family is the Trans-I conformation, corresponding to proline in a kinked alpha-helix. Two additional trans structures, Trans-II and Trans-III, as well as a cis conformation, Cis-I, are also energetically competitive. Interconversions between the trans states could thus be mediated by changes at a single torsion angle, accompanied by minor local hydrogen-bonding rearrangements. This work substantiates that membrane-buried proline can provide the basis for conformational transitions between discrete alpha-helix-based structures in a nonpolar environment.  相似文献   

15.
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane environment, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behavior. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P1-30 was estimated by measuring the permeability to PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St II conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation.  相似文献   

16.
Structurally characterizing partially folded peptides is problematic given the nature of their transient conformational states. 13C-NMR relaxation data can provide information on the geometry of bond rotations, motional restrictions, and correlated bond rotations of the backbone and side chains and, therefore, is one approach that is useful to assess the presence of folded structure within a conformational ensemble. A peptide 12mer, R1GITVNG7KTYGR12, has been shown to partially fold in a relatively stable beta-hairpin conformation centered at NG. Here, five residues, G2, V5, G7, Y10, G11, were selectively 13C-enriched, and 13C-NMR relaxation experiments were performed to obtain auto- and cross-correlation motional order parameters, correlation times, bond rotation angular variances, and bond rotational correlation coefficients. Our results indicate that, of the three glycines, G7 within the hairpin beta-turn displays the most correlated phi(t),psi(t) rotations with its axis of rotation bisecting the angle defined by the H-C-H bonds. These positively correlated bond rotations give rise to "twisting" type motions of the HCH group. V5 and Y10 phi,psi bond rotations are also positively correlated, with their CbetaCalphaH groups undergoing similar "twisting" type motions. Motions of near-terminal residues G2 and G11 are less restricted and less correlated and are best described as wobbling-in-a-cone. V5 and Y10 side-chain motions, aside from being highly restricted, were found to be correlated with phi,psi bond rotations. At 303 K, where the hairpin is considered "unfolded," the peptide exists in a transient, collapsed state because backbone and side-chain motions of V5, G7, and Y10 remain relatively restricted, unlike their counterparts in GXG-based tripeptides. These results provide unique information toward understanding conformational variability in the unfolded state of proteins, which is necessary to solve the protein folding problem.  相似文献   

17.
A survey of literature for the various types of helices experimentally observed in high-resolution single crystal x-ray diffraction analyses of peptides has allowed to determine accurate conformational and helical parameters for the various secondary structures such as the alpha-helix, the 3(10)-helix, the fully extended conformation (2(5)-helix) and the beta-bend ribbon spiral. For each of these structures the characteristic phi, psi conformational parameters, n, the number of residues per turn, h, the height per residues and p, the pitch of the helix are described.  相似文献   

18.
19.
The torsional potential functions Vt(phi) and Vt(psi) around single bonds N--C alpha and C alpha--C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (phi, psi)-plane with the value of Vtot(phi, psi), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in L-configuration, are Vt(phi) = 1.0 cos (phi + 60 degrees); Vt(psi) = 0.5 cos (psi + 60 degrees) - 1.0 cos (2 psi + 30 degrees) - 0.5 cos (3 psi + 30 degrees). The dipeptide energy maps Vtot(phi, psi) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line psi = 0 degrees. These functions derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.  相似文献   

20.
The relationship between the Ser, Thr, and Cys side-chain conformation (chi(1) = g(-), t, g(+)) and the main-chain conformation (phi and psi angles) has been studied in a selection of protein structures that contain alpha-helices. The statistical results show that the g(-) conformation of both Ser and Thr residues decreases their phi angles and increases their psi angles relative to Ala, used as a control. The additional hydrogen bond formed between the O(gamma) atom of Ser and Thr and the i-3 or i-4 peptide carbonyl oxygen induces or stabilizes a bending angle in the helix 3-4 degrees larger than for Ala. This is of particular significance for membrane proteins. Incorporation of this small bending angle in the transmembrane alpha-helix at one side of the cell membrane results in a significant displacement of the residues located at the other side of the membrane. We hypothesize that local alterations of the rotamer configurations of these Ser and Thr residues may result in significant conformational changes across transmembrane helices, and thus participate in the molecular mechanisms underlying transmembrane signaling. This finding has provided the structural basis to understand the experimentally observed influence of Ser residues on the conformational equilibrium between inactive and active states of the receptor, in the neurotransmitter subfamily of G protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号