首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Insulin decreases human adiponectin plasma levels.   总被引:6,自引:0,他引:6  
Insulin resistance and hyperinsulinemia are known atherosclerosis risk factors. The association between adiponectin plasma levels and obesity, insulinemia, and atherosclerosis has been shown. Thus, adiponectin may be a link between hyperinsulinemia and vascular disease. In vitro data demonstrated a reduction of adiponectin expression by insulin. However, it is still unclear whether insulin regulates adiponectinemia in vivo in humans. Five healthy male volunteers were studied. Circulating adiponectin levels were determined before and during hyperinsulinemic euglycemic clamp. Adiponectin was measured by radioimmunoassay. Hyperinsulinemia (85.0 +/- 33.2 at baseline vs. 482.8 +/- 64.4 pmol/l during steady state; p < 0.01) was achieved using a euglycemic hyperinsulinemic clamp, keeping blood glucose levels basically unchanged during the intervention (4.6 +/- 0.14 vs. 4.37 +/- 0.15 mmol/l, respectively; ns). We found a significant decrease of adiponectin plasma levels during the steady state of hyperinsulinemic euglycemic clamp (26.7 +/- 3.5 micro g/ml) compared to baseline levels (30.4 +/- 5 micro g/ml; p < 0.05). Hyperinsulinemia caused a significant decrease of adiponectin plasma levels under euglycemic conditions. Considering existing data about adiponectin dependent effects, hypoadiponectinemia might at least partly be a link between hyperinsulinemia and vascular disease in metabolic syndrome.  相似文献   

2.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are both incretin hormones regulating postprandial insulin secretion. Their relative importance in this respect under normal physiological conditions is unclear, however, and the aim of the present investigation was to evaluate this. Eight healthy male volunteers (mean age: 23 (range 20-25) years; mean body mass index: 22.2 (range 19.3-25.4) kg/m2) participated in studies involving stepwise glucose clamping at fasting plasma glucose levels and at 6 and 7 mmol/l. Physiological amounts of either GIP (1.5 pmol/kg/min), GLP-1(7-36)amide (0.33 pmol/kg/min) or saline were infused for three periods of 30 min at each glucose level, with 1 h "washout" between the infusions. On a separate day, a standard meal test (566 kcal) was performed. During the meal test, peak insulin concentrations were observed after 30 min and amounted to 223+/-27 pmol/l. Glucose+saline infusions induced only minor increases in insulin concentrations. GLP-1 and GIP infusions induced significant and similar increases at fasting glucose levels and at 6 mmol/l. At 7 mmol/l, further increases were seen, with GLP-1 effects exceeding those of GIP. Insulin concentrations at the end of the three infusion periods (60, 150 and 240 min) during the GIP clamp amounted to 53+/-5, 79+/-8 and 113+/-15 pmol/l, respectively. Corresponding results were 47+/-7, 95+/-10 and 171+/-21 pmol/l, respectively, during the GLP-1 clamp. C-peptide responses were similar. Total and intact incretin hormone concentrations during the clamp studies were higher compared to the meal test, but within physiological limits. Glucose infusion alone significantly inhibited glucagon secretion, which was further inhibited by GLP-1 but not by GIP infusion. We conclude that during normal physiological plasma glucose levels, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide contribute nearly equally to the incretin effect in humans, because their differences in concentration and potency outweigh each other.  相似文献   

3.
Reduced insulin clearance has been shown to predict the development of type 2 diabetes. Recently, it has been suggested that plasma glucose concentrations ≥8.6 mmol/l (155 mg/dl) at 1 h during an oral glucose tolerance test (OGTT) can identify individuals at high risk for type 2 diabetes among those who have normal glucose tolerance (NGT 1 h-high). The aim of this study was to examine whether NGT 1 h-high have a decrease in insulin clearance, as compared with NGT individuals with 1-h post-load glucose <8.6 mmol/l (l (155 mg/dl, NGT 1 h-low). To this end, 438 non-diabetic White individuals were subjected to OGTT and euglycemic-hyperinsulinemic clamp to evaluate insulin clearance and insulin sensitivity. As compared with NGT 1 h-low individuals, NGT 1 h-high had significantly higher 1-h and 2-h post-load plasma glucose and 2-h insulin levels as well as higher fasting glucose and insulin levels. NGT 1 h-high exhibited also a significant decrease in both insulin sensitivity (P<0.0001) and insulin clearance (P = 0.006) after adjusting for age, gender, adiposity measures, and insulin sensitivity. The differences in insulin clearance remained significant after adjustment for fasting glucose (P = 0.02) in addition to gender, age, and BMI. In univariate analyses adjusted for gender and age, insulin clearance was inversely correlated with body weight, body mass index, waist, fat mass, 1-h and 2-h post-load glucose levels, fasting, 1-h and 2-h post-load insulin levels, and insulin-stimulated glucose disposal. In conclusion, our data show that NGT 1 h-high have a reduction in insulin clearance as compared with NGT 1 h-low individuals; this suggests that impaired insulin clearance may contribute to sustained fasting and post-meal hyperinsulinemia.  相似文献   

4.
Adiponectin, an adipokine secreted by adipocytes, exerts beneficial effects on glucose and lipid metabolism and has been found to improve insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. Adiponectin is found in several isoforms and the high-molecular weight (HMW) form has been linked most strongly to the insulin-sensitizing effects. Fat content in skeletal muscle (intramyocellular lipids, IMCL) and liver (intrahepatic lipids, IHL) can be quantified noninvasively using proton magnetic resonance spectroscopy ((1)H-MRS). The purpose of our study was to assess the relationship between HMW adiponectin and measures of glucose homeostasis, IMCL and IHL, and to determine predictors of adiponectin levels. We studied 66 premenopausal women (mean BMI 31.0 ± 6.6 kg/m(2)) who underwent (1)H-MRS of calf muscles and liver for IMCL and IHL, computed tomography (CT) of the abdomen for abdominal fat depots, dual-energy X-ray absorptiometry (DXA) for fat and lean mass assessments, HMW and total adiponectin, fasting lipid profile and an oral glucose tolerance test (homeostasis model assessment of insulin resistance (HOMA(IR)), glucose and insulin area under the curve). There were strong inverse associations between HMW adiponectin and measures of insulin resistance, IMCL and IHL, independent of visceral adipose tissue (VAT) and total body fat. IHL was the strongest predictor of adiponectin and adiponectin was a predictor of HOMA(IR). Our study showed that in premenopausal obese women HMW adiponectin is inversely associated with IMCL and IHL content. This suggests that adiponectin exerts positive effects on insulin sensitivity in obesity by decreasing intracellular triglyceride content in skeletal muscle and liver; it is also possible that our results reflect effects of insulin on adiponectin.  相似文献   

5.
Adiponectin is an adipocyte-specific secretory protein that circulates in serum as a hexamer of relatively low molecular weight (LMW) and a larger multimeric structure of high molecular weight (HMW). Serum levels of the protein correlate with systemic insulin sensitivity. The full-length protein affects hepatic gluconeogenesis through improved insulin sensitivity, and a proteolytic fragment of adiponectin stimulates beta oxidation in muscle. Here, we show that the ratio, and not the absolute amounts, between these two oligomeric forms (HMW to LMW) is critical in determining insulin sensitivity. We define a new index, S(A), that can be calculated as the ratio of HMW/(HMW + LMW). db/db mice, despite similar total adiponectin levels, display decreased S(A) values compared with wild type littermates, as do type II diabetic patients compared with insulin-sensitive individuals. Furthermore, S(A) improves with peroxisome proliferator-activated receptor-gamma agonist treatment (thiazolidinedione; TZD) in mice and humans. We demonstrate that changes in S(A) in a number of type 2 diabetic cohorts serve as a quantitative indicator of improvements in insulin sensitivity obtained during TZD treatment, whereas changes in total serum adiponectin levels do not correlate well at the individual level. Acute alterations in S(A) (DeltaS(A)) are strongly correlated with improvements in hepatic insulin sensitivity and are less relevant as an indicator of improved muscle insulin sensitivity in response to TZD treatment, further underscoring the conclusions from previous clamp studies that suggested that the liver is the primary site of action for the full-length protein. These observations suggest that the HMW adiponectin complex is the active form of this protein, which we directly demonstrate in vivo by its ability to depress serum glucose levels in a dose-dependent manner.  相似文献   

6.
Ovarian hormones are known to affect endocrine pancreas function. However, data concerning the effects of anovulatory menstrual cycles in regularly menstruating women on endocrine pancreas and blood metabolites are lacking. We examined plasma insulin, glucagon, glucose, lactate, urea and glycerol concentrations in reproductive-age, regularly menstruating females classified as ovulating or non-ovulating on the basis of basal body temperature measurements and plasma 17beta-estradiol and progesterone determinations. All measurements were performed twice--in the follicular and again in the luteal phases of the menstrual cycle. There were no differences in plasma lactate and glycerol concentrations between the two groups of subjects. Plasma insulin concentrations tended to be lower in non-ovulating than in ovulating women. In addition, plasma glucagon did not differ in the follicular (33.2 pmol/l) or luteal phase of the menstrual cycle in females with disturbed ovarian hormone secretion (34.1 pmol/l). In contrast, plasma glucagon concentrations in the luteal phase (32.8 pmol/l) were significantly higher than in the follicular phase (24.9 pmol/l) of the menstrual cycle in ovulating women. Plasma glucose concentrations in the follicular phase of the menstrual cycle in non-ovulating women (4.1 mmol/l) were slightly but significantly lower than in their ovulating counterparts (5.3 mmol/l). Furthermore, no correlations were noted between plasma glucose and insulin-to-glucagon molar ratio in non-ovulating subjects. Plasma urea concentrations in non-ovulating women were markedly lower than in ovulating women in both follicular and luteal phases of the menstrual cycle (4.1 and 3.9 mmol/l vs. 5.3 and 5.4 mmol/l in non-ovulating and ovulating women, respectively). In ovulating women, plasma urea levels in both cycle phases were significantly correlated with plasma glucagon concentrations, but no such correlation was found in non-ovulating women. In conclusion, anovulatory menstrual cycles in premenopausal females slightly altered pancreatic hormone plasma levels but markedly impaired their action on plasma glucose and urea concentrations.  相似文献   

7.
The aim of this study was to investigate the influence of the arteriovenous (A-V) gradient in blood glucose concentrations at low and high insulin levels on the determination of glucose requirements during glucose clamping in 9 healthy, insulin sensitive, male volunteers. In a random order two clamps were performed, once using arterialised venous blood (A Clamp, mean pO2 = 11.5 +/- 0.36 kPa, 86 +/- 2.7 mmHg), and once using venous blood (V clamp, mean pO2 = 7.9 +/- 0.21 kPa, 59 +/- 1.6 mmHg). Insulin levels were maintained at 48 +/- 2.4 mU/l from 0-180 min and at 1054 +/- 114 mU/l from 180-360 min. Elevation of insulin levels caused a significant rise of the A-V gradient: from 0.3 +/- 0.1 to 0.5 +/- 0.1 mmol/l (p < 0.05) and from 0.2 +/- 0.1 to 0.3 +/- 0.1 mmol/l (p < 0.05) during the A and V clamps, respectively. Despite these A-V glucose gradients no significant differences were found for the glucose requirements during the last 30 min of each period of insulin infusion between the A and V clamps: 43.70 +/- 3.4 vs 44.8 +/- 2.8 mumol.kg-1.min-1 during the low insulin level and 77.3 +/- 5.0 vs 76.2 +/- 3.4 mumol.kg-1.min-1 during the high insulin level. We conclude that the A-V glucose gradient, even at high insulin levels, does not influence the assessment of glucose requirements to a measurable extent, allowing the use of the simpler technique of taking venous rather than arterialised venous blood for the measurements of glucose levels during glucose clamping.  相似文献   

8.
To investigate the effect of elevated plasma free fatty acid (FFA) concentrations on splanchnic glucose uptake (SGU), we measured SGU in nine healthy subjects (age, 44 +/- 4 yr; body mass index, 27.4 +/- 1.2 kg/m(2); fasting plasma glucose, 5.2 +/- 0.1 mmol/l) during an Intralipid-heparin (LIP) infusion and during a saline (Sal) infusion. SGU was estimated by the oral glucose load (OGL)-insulin clamp method: subjects received a 7-h euglycemic insulin (100 mU x m(-2) x min(-1)) clamp, and a 75-g OGL was ingested 3 h after the insulin clamp was started. After glucose ingestion, the steady-state glucose infusion rate (GIR) during the insulin clamp was decreased to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in GIR during the period after glucose ingestion from the ingested glucose load. [3-(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of endogenous glucose production (EGP) and glucose disappearance (R(d)). During the 3-h euglycemic insulin clamp before glucose ingestion, R(d) was decreased (8.8 +/- 0.5 vs. 7.6 +/- 0.5 mg x kg(-1) x min(-1), P < 0.01), and suppression of EGP was impaired (0.2 +/- 0.04 vs. 0.07 +/- 0.03 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly increased during the LIP vs. Sal infusion study (30 +/- 2 vs. 20 +/- 2%, P < 0.005). In conclusion, an elevation in plasma FFA concentration impairs whole body glucose R(d) and insulin-mediated suppression of EGP in healthy subjects but augments SGU.  相似文献   

9.
The objective of this investigation was to determine the relation between baseline glucose, insulin, adiponectin, and leptin levels and subsequent 6‐year weight and waist change in older men and women without diabetes in a prospective cohort study. Participants were 1,198 Dutch men and women without diabetes who were aged 50–77 years when baseline metabolic and anthropometric measurements were evaluated (1989–1991). Approximately 6 years later, body weight and waist circumference were re‐measured at a follow‐up examination (1996–1998). Metabolic variables (fasting plasma glucose, 2‐h postchallenge plasma glucose, homeostasis model assessment of insulin resistance (HOMA‐IR), adiponectin, and leptin) were evaluated as predictors of changes in weight and waist circumference. Postchallenge plasma glucose (mmol/l) significantly predicted less gain in both weight and waist circumference (β = ?0.28 kg, s.e. = 0.11; β = ?0.31 cm, s.e. = 0.14, respectively) during follow‐up. Leptin (µg/l) significantly predicted greater increases in weight (β = 0.29 kg, s.e. = 0.07) and waist (β = 0.16 cm, s.e. = 0.08) among men and in waist among women (β = 0.06 cm, s.e. = 0.02). Fasting plasma glucose (mmol/l) predicted an increase in waist among women (β = 1.59 cm, s.e. = 0.63), but not in men (β = ?0.74 cm, s.e. = 0.55). Adiponectin and insulin did not predict weight or waist change. The authors conclude that lower postchallenge plasma glucose and higher fasting leptin levels significantly predicted long‐term increases in weight and waist circumference. In contrast, measures of insulin resistance and adiponectin were not associated with weight change in this cohort of older persons without diabetes.  相似文献   

10.
Adiponectin is a recently discovered adipocytokine that correlates negatively with body mass index and body fat. In patients with GH deficiency, treatment with recombinant human growth hormone (rhGH) reduces body fat mass and thus may also have a favorable effect in patients with metabolic syndrome, and would also be expected to increase adiponectin levels. However, due to its diabetogenic effect, rhGH treatment also bears an increased risk for the development of type 2 diabetes mellitus. We conducted a 18-month randomized, double-blind, placebo-controlled study to assess the effect of rhGH in combination with metformin (MGH) in 14 obese men (7 MGH; 7 Metformin+Placebo, 54 +/- 2 years, BMI 33.0 +/- 1.2 kg/m(2)) with mildly elevated fasting plasma glucose (FPG) at screening (6.1-8.0 mmol/l). All patients received metformin (850 mg twice daily) for treatment of type 2 diabetes mellitus/impaired glucose tolerance, either alone or in combination with rhGH (daily dose 9.5 mug/kg body weight). Glucose disposal rate (GDR) was measured using the euglycemic hyperinsulinemic clamp technique, and body composition was measured by DEXA at 0 and 18 months. After 18 months, the mean adiponectin concentration increased by 32 +/- 11 % (p = 0.018) in the MGH group and did not change in the MP group (- 10 +/- 13 %; p = n. s.). The difference in relative changes in adiponectin levels between the two groups after 18 months was statistically significant (p = 0.026). Improvement in insulin sensitivity (GDR) correlated positively with adiponectin levels (r = 0.73; p = 0.004). In conclusion, the additional administration of rhGH increased adiponectin levels in patients with metabolic syndrome, indicating its potential role in adiponectin-associated insulin sensitivity alterations.  相似文献   

11.
Glucose infusion attenuates fatigue in rat plantaris muscle stimulated in situ, and this is associated with a better maintenance of electrical properties of the fiber membrane (Karelis AD, Péronnet F, and Gardiner PF. Exp Physiol 87: 585-592, 2002). The purpose of the present study was to test the hypothesis that elevated plasma insulin concentration due to glucose infusion ( approximately 900 pmol/l), rather than high plasma glucose concentration ( approximately 10-11 mmol/l), could be responsible for this phenomenon, because insulin has been shown to stimulate the Na+-K+ pump. The plantaris muscle was indirectly stimulated (50 Hz, for 200 ms, 5 V, every 2.7 s) via the sciatic nerve to perform concentric contractions for 60 min, while insulin (8 mU x kg-1x min-1: plasma insulin approximately 900 pmol/l) and glucose were infused to maintain plasma glucose concentration between 4 and 6 [6.2 +/- 0.4 mg x kg-1x min-1: hyperinsulinemic-euglycemic (HE)] or 10 and 12 mmol/l [21.7 +/- 1.1 mg. kg-1. min-1: hyperinsulinemic-hyperglycemic clamps (HH)] (6 rats/group). The reduction in submaximal dynamic force was significantly (P < 0.05) less with HH (-53%) than with HE and saline only (-66 and -70%, respectively). M-wave characteristics were also better maintained in the HH than in HE and control groups. These results demonstrate that the increase in insulin concentration is not responsible for the increase in muscle performance observed after the elevation of circulating glucose.  相似文献   

12.
Administration of supplemental glucose and/or insulin is postulated to improve the outcome from myocardial ischemia by increasing the heart's relative utilization of glucose as an energy substrate. To examine the degree to which circulating glucose and insulin levels actually influence myocardial substrate preference in vivo, we infused conscious, chronically catheterized rats with D-[1-(13)C]glucose and compared steady-state (13)C enrichment of plasma glucose with that of myocardial glycolytic ([3-(13)C]alanine) and oxidative ([4-(13)C]glutamate) intermediary metabolites. In fasting rats, [3-(13)C]alanine-to-[1-(13)C]glucose and [4-(13)C]glutamate-to-[3-(13)C]alanine ratios averaged 0.16 +/- 0.12 and 0.14 +/- 0.03, respectively, indicating that circulating glucose contributed 32% of myocardial glycolytic flux, whereas subsequent flux through pyruvate dehydrogenase contributed 14% of total tricarboxylic acid (TCA) cycle activity. Raising plasma glucose to 11 mmol/l, or insulin to 500 pmol/l, increased these contributions equivalently. At supraphysiological (>6,500 pmol/l) insulin levels, the plasma glucose contribution to glycolysis increased further, and addition of hyperglycemia made it the sole glycolytic substrate, yet [4-(13)C]glutamate-to-[3-(13)C]alanine ratios remained /=40% of myocardial TCA cycle flux.  相似文献   

13.
We studied the effect of the acute administration of gliclazide at 160 mg on insulin release during hyperglycaemic clamps in 12 type 2 diabetes patients, age 50 +/- 9.0 years, diabetes duration 5.5 +/- 4.8 years, fasting blood glucose 9.6 +/- 2.1 mmol/L (means +/- SD). After a 210 min of hyperinsulinaemic euglycaemic clamp (blood glucose 4.6 +/- 0.14mmol/L), gliclazide or placebo (randomised, double-blind, cross-over) was administered; 60 minutes later, a hyperglycaemic clamp (4hr) at 8mmol/L was started. Plasma C-peptide levels increased significantly after the administration of gliclazide (increment 0.17 +/- 0.15 vs. 0.04 +/- 0.07 nmol/L, p = 0.024) before the clamp. After the start of the hyperglycaemic clamp, the areas under the curve (AUC) for insulin and C-peptide did not differ from 0-10 min (first phase) with gliclazide. However, second-phase insulin release (30-240 min) was markedly enhanced by gliclazide. AUC plasma insulin (30 to 240 min) was statistically significantly higher after gliclazide (12.3 +/- 13.9 vs. -0.56 +/- 9.4 nmol/L x 210 min, p = 0.022); similarly, AUC plasma C-peptide (30 to 240 min) was also higher: 128 +/- 62 vs. 63 +/- 50 nmol/L x 210 min, p = 0.002). In conclusion, in long-standing type 2 diabetes the acute administration of gliclazide significantly enhances second phase insulin release at a moderately elevated blood glucose level. In contrast to previous findings in mildly diabetic subjects, these 12 type 2 diabetes patients who had an inconsiderable first phase insulin release on the placebo day, only showed an insignificant increase in first phase with gliclazide.  相似文献   

14.
Adiponectin is an adipocyte-derived hormone, which has been shown to play important roles in the regulation of glucose and lipid metabolism. Eight mutations in human adiponectin have been reported, some of which were significantly related to diabetes and hypoadiponectinemia, but the molecular mechanisms of decreased plasma levels and impaired action of adiponectin mutants were not clarified. Adiponectin structurally belongs to the complement 1q family and is known to form a characteristic homomultimer. Herein, we demonstrated that simple SDS-PAGE under non-reducing and non-heat-denaturing conditions clearly separates multimer species of adiponectin. Adiponectin in human or mouse serum and adiponectin expressed in NIH-3T3 or Escherichia coli formed a wide range of multimers from trimers to high molecular weight (HMW) multimers. A disulfide bond through an amino-terminal cysteine was required for the formation of multimers larger than a trimer. An amino-terminal Cys-Ser mutation, which could not form multimers larger than a trimer, abrogated the effect of adiponectin on the AMP-activated protein kinase pathway in hepatocytes. Among human adiponectin mutations, G84R and G90S mutants, which are associated with diabetes and hypoadiponectinemia, did not form HMW multimers. R112C and I164T mutants, which are associated with hypoadiponectinemia, did not assemble into trimers, resulting in impaired secretion from the cell. These data suggested impaired multimerization and/or the consequent impaired secretion to be among the causes of a diabetic phenotype or hypoadiponectinemia in subjects having these mutations. In conclusion, not only total concentrations, but also multimer distribution should always be considered in the interpretation of plasma adiponectin levels in health as well as various disease states.  相似文献   

15.
Atypical antipsychotic drugs such as Olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying the metabolic side-effects of these centrally acting drugs are still unknown to a large extent. We compared the effects of peripheral (intragastric; 3 mg/kg/h) versus central (intracerebroventricular; 30 μg/kg/h) administration of Olanzapine on glucose metabolism using the stable isotope dilution technique (Experiment 1) in combination with low and high hyperinsulinemic-euglycemic clamps (Experiments 2 and 3), in order to evaluate hepatic and extra-hepatic insulin sensitivity, in adult male Wistar rats. Blood glucose, plasma corticosterone and insulin levels were measured alongside endogenous glucose production and glucose disappearance. Livers were harvested to determine glycogen content. Under basal conditions peripheral administration of Olanzapine induced pronounced hyperglycemia without a significant increase in hepatic glucose production (Experiment 1). The clamp experiments revealed a clear insulin resistance both at hepatic (Experiment 2) and extra-hepatic levels (Experiment 3). The induction of insulin resistance in Experiments 2 and 3 was supported by decreased hepatic glycogen stores in Olanzapine-treated rats. Central administration of Olanzapine, however, did not result in any significant changes in blood glucose, plasma insulin or corticosterone concentrations nor in glucose production. In conclusion, acute intragastric administration of Olanzapine leads to hyperglycemia and insulin resistance in male rats. The metabolic side-effects of Olanzapine appear to be mediated primarily via a peripheral mechanism, and not to have a central origin.  相似文献   

16.
3T3 L1脂肪细胞特异分泌一分子量约为 30kD的蛋白质 ,命名为ACRP30。ACRP30只在分化后的脂肪细胞中表达 ,在对胰岛素敏感度不一样的老鼠模型中 ,降低ACRP30的表达与胰岛素不敏感有关。为了研究人ACRP30同源基因 ,运用RT PCR方法分别克隆了脂连蛋白和球状区脂连蛋白 (脂连蛋白的C端球状区域 )基因 ,并在大肠杆菌中获得了融合表达。用融合球状区脂连蛋白蛋白免疫新西兰兔 ,得到了滴度为 1 0 0 0 0的多克隆抗体。用Western印迹方法检测到了人血液中一种能与该抗体作用的大小约为 38kD的蛋白质 ,此蛋白质也能被抗ACRP30的抗体检测到。单一注射融合脂连蛋白或者球状区脂连蛋白能显著降低糖尿病大鼠的血糖浓度 ,这些结果提示重组的脂连蛋白和球状区脂连蛋白具有生物学活性 ,为脂连蛋白的功能研究打下了一定的基础  相似文献   

17.
Increased concentrations of plasma fibrinogen, an independent risk factor for cardiovascular disease (CVD), in obese children have been reported. The underlying mechanism for this, however, remains to be defined. In the current study, we measured the fractional synthesis rates (FSR) of plasma fibrinogen in six healthy postpubertal obese girls [body mass index (BMI) 36.6 +/- 1.8 kg/m(2); age 16.6 +/- 0.5 yr] and six age-matched lean normal control girls (BMI 20.8 +/- 0.7 kg/m(2); age 16.4 +/- 0.4 yr) during a primed, continuous infusion of L-[1-(13)C]leucine in the postabsorptive state. The method involved purification of plasma fibrinogen by use of immunoaffinity chromatography followed by measurement of [(13)C]leucine enrichment using gas chromatography-combustion-isotope ratio mass spectrometry. The FSR of fibrinogen in obese girls (35.06 +/- 2.61%/day) was almost double that in lean girls (17.02 +/- 1.43%/day), and this increase was associated with a relative increase in plasma concentration of fibrinogen as well as BMI in the subjects studied. Obese subjects had high fasting insulin levels (138 +/- 47 pmol/l) compared with lean subjects (54 +/- 11 pmol/l), whereas their glucose concentrations were similar (4.5 +/- 0.3 mmol/l in obese and 4.4 +/- 0.4 mmol/l in lean subjects), suggesting insulin resistance. The doubling of the FSR of fibrinogen provides novel insight into the mechanism of elevated levels of plasma fibrinogen and suggests a primary role for increased synthesis in producing the hyperfibrinogenemia associated with obesity. This finding may have important implications in the design of therapies for modulating plasma fibrinogen levels in obesity and/or CVD in childhood.  相似文献   

18.
Impaired fasting glucose (IFG) represents risk of development of diabetes (DM) and its complications. We investigated insulin secretion and insulin sensitivity in 403 IFG subjects divided into three levels of 2-hour postchallenge glucose (2-h PG) to clarify the factors responsible in the development of glucose intolerance in Japanese IFG. Nearly 60% of the subjects at annual medical check-up with FPG of 6.1-7.0 mmol/l at the first screening were diagnosed by 75 g oral glucose tolerance test (OGTT) to have impaired glucose tolerance (IGT; FPG <7.0 mmol/l and 7.8 mmol/l <2-h PG <11.1 mmol/l) or DM (isolated postchallenge hyperglycemia (IPH); FPG <7.0 mmol/l and 11.1 mmol/l <2-h PG level). The primary factor in the decreased glucose tolerance was a decrease in early-phase insulin, with some contribution of increasing insulin resistance. In addition, IFG/IGT and IFG/IPH subjects showed a compensatory increase in basal insulin secretion sufficient to keep FPG levels within the non-diabetic range. IFG is composed of three different categories in basal, early-phase insulin secretion, and insulin sensitivity.  相似文献   

19.
Obesity is often associated with insulin resistance, low-grade systemic inflammation, and reduced plasma adiponectin. Inflammation is also increased in adipose tissue, but it is not clear whether the reductions of adiponectin levels are related to dysregulation of insulin activity and/or increased proinflammatory mediators. In this study, we investigated the interactions of insulin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in the regulation of adiponectin production using in vivo and in vitro approaches. Plasma adiponectin and parameters of insulin resistance and inflammation were assessed in a cohort of lean and obese insulin-resistant subjects. In addition, the effect of insulin was examined in vivo using the hyperinsulinemic-euglycemic clamp, and in adipose tissue (AT) cultures. Compared with lean subjects, the levels of total adiponectin, and especially the high-molecular-weight (HMW) isomer, were abnormally low in obese insulin-resistant subjects. The hyperinsulinemic clamp data confirmed the insulin-resistant state in the obese patients and showed that insulin infusion significantly increased the plasma adiponectin in lean but not obese subjects (P < 0.01). Similarly, insulin increased total adiponectin release from AT explants of lean and not obese subjects. Moreover, expression and secretion of TNF-α and IL-6 increased significantly in AT of obese subjects and were negatively associated with expression and secretion of adiponectin. In 3T3-L1 and human adipocyte cultures, insulin strongly enhanced adiponectin expression (2-fold) and secretion (3-fold). TNF-α, and not IL-6, strongly opposed the stimulatory effects of insulin. Intriguingly, the inhibitory effect of TNF-α was especially directed toward the HMW isomer of adiponectin. In conclusion, these studies show that insulin upregulates adiponectin expression and release, and that TNF-α opposes the stimulatory effects of insulin. A combination of insulin resistance and increased TNF-α production could explain the decline of adiponectin levels and alterations of isomer composition in plasma of obese insulin-resistant subjects.  相似文献   

20.
Obesity is associated with insulin resistance and hyperinsulinemia, which is considered to be a core component in the pathophysiology of obesity-related comorbidities. As yet it is unknown whether insulin resistance and hyperinsulinemia already develop during weight gain within the normal range. In 10 healthy male subjects the effect of intentional weight gain by 2 BMI points was examined on insulin. C-peptide and glucose levels following a meal, 75 g of glucose, and a two-step hyperglycemic clamp increased plasma glucose by 1.38 and 2.75 mmol/l, respectively. Baseline insulin, C-peptide, and glucose concentrations were significantly higher after weight gain from 21.8 to 23.8 kg/m(2) BMI within 4(1/2) mo. Calculations of insulin secretion and clearance indicate that reduced insulin clearance contributes more to post-weight gain basal hyperinsulinemia than insulin secretion. Following oral or intravenous stimulation insulin concentrations were significantly higher post-weight gain during all three test conditions, whereas C-peptide and glucose levels did not differ. Calculations of insulin secretion and clearance demonstrated that higher stimulated insulin concentrations are entirely due to clearance but not secretion. Despite significantly higher insulin levels, the rate of intravenous glucose required to maintain the defined elevation of glucose levels was either identical (1.38 mmol/l) or even significantly lower (2.75 mmol/l) following weight gain. The present study demonstrates for the first time that insulin resistance already develops during weight gain within the normal range of body weight. The associated basal and stimulated hyperinsulinemia is the result of differentiated changes of insulin secretion and clearance, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号