首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G W Gould  H M Thomas  T J Jess  G I Bell 《Biochemistry》1991,30(21):5139-5145
We describe the functional expression of three members of the family of human facilitative glucose transporters, the erythrocyte-type transporter (GLUT 1), the liver-type transporter (GLUT 2), and the brain-type transporter (GLUT 3), by microinjection of their corresponding mRNAs into Xenopus oocytes. Expression was determined by the appearance of transport activity, as measured by the transport of 3-O-methyl-D-glucose or 2-deoxy-D-glucose. We have measured the Km for 3-O-methyl-D-glucose of GLUTs 1, 2, and 3, and the results are discussed in light of the possible roles for these different transporters in the regulation of blood glucose. The substrate specificity of these transporter isoforms has also been examined. We show that, for all transporters, the transport of 2-deoxy-D-glucose is inhibited by D-but not by L-glucose. In addition, both D-galactose and D-mannose are transported by GLUTs 1-3 at significant rates; furthermore, GLUT 2 is capable of transporting D-fructose. The nature of the glucose binding sites of GLUTs 1-3 was investigated by using hexose inhibition of 2-deoxy-D-glucose uptake. We show that the characteristics of this inhibition are different for each transporter isoform.  相似文献   

2.
We previously demonstrated that distinct facilitative glucose transporter isoforms display differential sorting in polarized epithelial cells. In Madin-Darby canine kidney (MDCK) cells, glucose transporter 1 and 2 (GLUT1 and GLUT2) are localized to the basolateral cell surface whereas GLUTs 3 and 5 are targeted to the apical membrane. To explore the molecular mechanisms underlying this asymmetric distribution, we analyzed the targeting of chimeric glucose transporter proteins in MDCK cells. Replacement of the carboxy-terminal cytosolic tail of GLUT1, GLUT2, or GLUT4 with that from GLUT3 resulted in apical targeting. Conversely, a GLUT3 chimera containing the cytosolic carboxy terminus of GLUT2 was sorted to the basolateral membrane. These findings are not attributable to the presence of a basolateral signal in the tails of GLUTs 1, 2, and 4 because the basolateral targeting of GLUT1 was retained in a GLUT1 chimera containing the carboxy terminus of GLUT5. In addition, we were unable to demonstrate the presence of an autonomous basolateral sorting signal in the GLUT1 tail using the low-density lipoprotein receptor as a reporter. By examining the targeting of a series of more defined GLUT1/3 chimeras, we found evidence of an apical targeting signal involving residues 473-484 (DRSGKDGVMEMN) in the carboxy tail. We conclude that the targeting of GLUT3 to the apical cell surface in MDCK cells is regulated by a unique cytosolic sorting motif.  相似文献   

3.
Glucose transporters 1 (GLUT1) and 3 (GLUT3) belong to the solute carrier family 2 (SLC2, facilitated glucose transporter) and are the two most important glucose transporters (GLUTs) in brain tissue, and between them, GLUT3 is the primary one for neurons, which is responsible for glucose uptake. To obtain insights into the possible alterations of GLUT1 and GLUT3 in transmissible spongiform encephalopathies (TSEs), the protein levels of GLUT1 and GLUT3 in the brain tissues of agents 263K- and 139A-infected hamsters, as well as agents 139A- and ME7-infected mice, were evaluated. Western blots, immunofluorescent assay (IFA), and immunohistochemical (IHC) assays revealed that at the terminal stages of the infection, GLUT3 level in the brain tissues of scrapie-infected rodents was significantly downregulated, while GLUT1 level remained almost unchanged. The decline of GLUT3 level was closely related with prolonged incubation time. In line with these results in vivo, the GLUT3 level in a prion persistently infected cell line SMB-S15 was also lower than that of its normal cell line SMB-PS. Moreover, the level of hypoxia-inducible factor-1 alpha (HIF-1α), which positively regulated the expressions of GLUTs, was also markedly downregulated in the brains of several scrapie-infected animals. In vitro glucose uptake assays illustrated a markedly decreased 2-[N-(7-nitrobenze-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose uptake activity in SMB-S15 cells. Our data indicate that the reduction of GLUT3 is a common phenomenon in prion diseases, which occurs much earlier than the appearance of clinical symptoms. Defect in glucose uptake and metabolism of neurons, like in other neurodegenerative diseases, for example, Alzheimer’s disease (AD), may be one of the essential processes in the pathogenesis of prion diseases.  相似文献   

4.
The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers.  相似文献   

5.
Facilitated glucose transporters (GLUTs) mediate transport of sugars across cell membranes by using the chemical gradient of sugars as the driving force. Improved cloning techniques and database analyses have expanded this family of proteins to a total of 14 putative members. In this work a novel hexose transporter isoform, GLUT7, has been cloned from a human intestinal cDNA library by using a PCR-based strategy (GenBank accession no. AY571960). The encoded protein is comprised of 524 amino acid residues and shares 68% similarity and 53% identity with GLUT5, its most closely related isoform. When GLUT7 was expressed in Xenopus oocytes, it showed high-affinity transport for glucose (K(m) = 0.3 mM) and fructose (IC(50) = 0.060 mM). Galactose, 2-deoxy-d-glucose, and xylose were not transported. Uptake of 100 microM d-glucose was not inhibited by 200 microM phloretin or 100 microM cytochalasin B. Northern blotting indicated that the mRNA for GLUT7 is present in the human small intestine, colon, testis, and prostate. Western blotting and immunohistochemistry of rat tissues with an antibody raised against the predicted COOH-terminal sequence confirmed expression of the protein in the small intestine and indicated that the transporter is predominantly expressed in the enterocytes' brush-border membrane. The unusual substrate specificity and close sequence identity with GLUT5 suggest that GLUT7 represents an intermediate between class II GLUTs and the class I member GLUT2. Comparison between these proteins may provide key information as to the structural determinants for the recognition of fructose as a substrate.  相似文献   

6.
The subcellular localization of five isoforms of facillitated-diffusion glucose transporters (GLUTs), from GLUT1 to GLUT5, in rat pancreatic islets was studied by immunohistochemistry using rabbit polyclonal antisera against mouse or rat GLUT peptides. Animals were perfusion-fixed with phosphate-buffered 4% paraformaldehyde and the pancreases were removed. Some specimens were embedded in paraffin, serially sectioned, and immunostained for glucagon, insulin, somatostatin, and the GLUTs for light microscopic observation. Others were prepared for immunoelectron microscopy by the post-embedding method. By these methods, GLUT2 immunostaining was observed on the lateral membranes of pancreatic β-cells, whereas GLUT3 immunoreaction was predominatly localized in the cytoplasm to β-cells and was not found in α-cells. In contrast, GLUT5 immunostaining was preferentially localized in the cytoplasm of α-cells compared to that of β-cells. However, GLUT1 and GLUT4 were either barely or not at all detectable in any cells. These results suggest that rat islets take up glucose by at least three different processes and that blood glucose levels could be modulated differentially by: a high Km glucose transporter, GLUT2, in β-cells; by a low Km glucose transporter, GLUT3, in β-cells; and by a low Km glucose transporter, GLUT5, in α-cells.  相似文献   

7.
Glucose uptake in the heart is mediated by specific glucose transporters (GLUTs) present on cardiomyocyte cell surface membranes. Metabolic stress and insulin both increase glucose transport by stimulating the translocation of glucose transporters from intracellular storage vesicles to the cell surface. Isolated perfused transgenic mouse hearts are commonly used to investigate the molecular regulation of heart metabolism; however, current methods to quantify cell surface glucose transporter content in intact mouse hearts are limited. Therefore, we developed a novel technique to directly assess the cell surface content of the cardiomyocyte glucose transporter GLUT4 in perfused mouse hearts, using a cell surface impermeant biotinylated bis-glucose photolabeling reagent (bio-LC-ATB-BGPA). Bio-LC-ATB-BGPA was infused through the aorta and cross-linked to cell surface GLUTs. Bio-LC-ATB-BGPA-labeled GLUT4 was recovered from cardiac membranes by streptavidin isolation and quantified by immunoblotting. Bio-LC-ATB-BGPA-labeling of GLUT4 was saturable and competitively inhibited by d-glucose. Stimulation of glucose uptake by insulin in the perfused heart was associated with parallel increases in bio-LC-ATB-BGPA-labeling of cell surface GLUT4. Bio-LC-ATB-BGPA also labeled cell surface GLUT1 in the perfused heart. Thus, photolabeling provides a novel approach to assess cell surface glucose transporter content in the isolated perfused mouse heart and may prove useful to investigate the mechanisms through which insulin, ischemia, and other stimuli regulate glucose metabolism in the heart and other perfused organs.  相似文献   

8.
9.
Patterns of glucose transporter expression have been well-characterized in mammals. However, data for birds is currently restricted to isolated cells, domestic chickens and chicks, and ducklings. Therefore, in the present study, protein and gene expression of various glucose transporters (GLUTs) in English sparrow extensor digitorum communis, gastrocnemius and pectoralis muscles as well as heart, kidney, and brain tissues were examined. The hypothesis is that the expression pattern of avian GLUTs differs from mammals to maintain the high plasma glucose levels of birds and insulin insensitivity. Our studies failed to identify a GLUT4-like insulin responsive transporter in sparrows. GLUT1 gene expression was identified in all tissues examined and shares 88% homology with chicken and 84% homology with human GLUT1. Compared to the rat control, GLUT1 immunostaining of sparrow extensor digitorum communis muscle was weak and appeared to be localized to blood vessels whereas immunostaining of gastrocnemius muscles was comparable to rat muscle controls. Gene expression of GLUT3 was identified in all tissues examined and shares 90% gene sequence homology with chicken embryonic fibroblast and 75% homology with human GLUT3. Protein expression of GLUT3 was not determined as an avian antibody is not available. Moreover, the C-terminus of the mammalian GLUT3 transporter, against which antibodies are typically designed, differs significantly among species. The predominant difference of chicken and sparrow GLUT expression patterns from that of mammals is the lack of an avian GLUT4. The absence of this insulin responsive GLUT in birds may be a contributing factor to the observed high blood glucose levels and insulin insensitivity.  相似文献   

10.
Activation of the glucose transporter GLUT4 by insulin.   总被引:12,自引:0,他引:12  
The transport of glucose into cells and tissues is a highly regulated process, mediated by a family of facilitative glucose transporters (GLUTs). Insulin-stimulated glucose uptake is primarily mediated by the transporter isoform GLUT4, which is predominantly expressed in mature skeletal muscle and fat tissues. Our recent work suggests that two separate pathways are initiated in response to insulin: (i) to recruit transporters to the cell surface from intracellular pools and (ii) to increase the intrinsic activity of the transporters. These pathways are differentially inhibited by wortmannin, demonstrating that the two pathways do not operate in series. Conversely, inhibitors of p38 mitogen-activated protein kinase (MAPK) imply that p38 MAPK is involved only in the regulation of the pathway leading to the insulin-stimulated activation of GLUT4. This review discusses the evidence for the divergence of GLUT4 translocation and activity and proposed mechanisms for the regulation of GLUT4.  相似文献   

11.
Vitamin C is mainly transported across the inner blood–retinal barrier (inner BRB) as dehydroascorbic acid (DHA) via a facilitative glucose transporter (GLUT) 1, and accumulates as ascorbic acid (AA) in the retina. Müller cells, huge glial cells, exhibit passive structural and metabolic functions for retinal neurons and the inner BRB. We characterized DHA transport and its corresponding transporter in a rat Müller cell line (TR-MUL5 cells). [14C]DHA uptake by TR-MUL5 cells took place in a time-dependent and Na+-independent manner. [14C]DHA uptake was inhibited by substrates and inhibitors of GLUTs, suggesting that Müller cells take up DHA via GLUTs. HPLC analysis revealed that most of the DHA taken up by TR-MUL5 cells was converted to AA and accumulated as AA in TR-MUL5 cells. [14C]DHA uptake by TR-MUL5 cells took place in a concentration-dependent manner with a Michaelis–Menten constant of 198 μM and was inhibited by cytochalasin B in a concentration-dependent manner with a 50% inhibition concentration of 0.283 μM. Although GLUT1, 3, and 4 mRNA are expressed in TR-MUL5 cells, quantitative real-time PCR revealed that GLUT1 mRNA expression was 5.85- and 116-fold greater than that of GLUT3 and 4, respectively. Western blot analysis supports the expression of GLUT1 protein with 45 kDa in TR-MUL5 cells. In conclusion, DHA is taken up by facilitative glucose transporters, most likely GLUT1, and converted to AA in TR-MUL5 cells.  相似文献   

12.
Glucose transporters: expression,regulation and cancer   总被引:10,自引:0,他引:10  
Mammalian cells depend on glucose as a major substrate for energy production. Glucose is transported into the cell via facilitative glucose transporters (GLUT) present in all cell types. Many GLUT isoforms have been described and their expression is cell-specific and subject to hormonal and environmental control. The kinetic properties and substrate specificities of the different isoforms are specifically suited to the energy requirements of the particular cell types. Due to the ubiquitousness of these transporters, their differential expression is involved in various disease states such as diabetes, ischemia and cancer. The majority of cancers and isolated cancer cell lines over-express the GLUT family members which are present in the respective tissue of origin under non-cancerous conditions. Moreover, due to the requirement of energy to feed uncontrolled proliferation, cancer cells often express GLUTs which under normal conditions would not be present in these tissues. This over-expression is predominantly associated with the likelihood of metastasis and hence poor patient prognosis. This article presents a review of the current literature on the regulation and expression of GLUT family members and has compiled clinical and research data on GLUT expression in human cancers and in isolated human cancer cell lines.  相似文献   

13.
Hresko RC  Hruz PW 《PloS one》2011,6(9):e25237
The clinical use of several first generation HIV protease inhibitors (PIs) is associated with the development of insulin resistance. Indinavir has been shown to act as a potent reversible noncompetitive inhibitor of zero-trans glucose influx via direct interaction with the insulin responsive facilitative glucose transporter GLUT4. Newer drugs within this class have differing effects on insulin sensitivity in treated patients. GLUTs are known to contain two distinct glucose-binding sites that are located on opposite sides of the lipid bilayer. To determine whether interference with the cytoplasmic glucose binding site is responsible for differential effects of PIs on glucose transport, intact intracellular membrane vesicles containing GLUT1 and GLUT4, which have an inverted transporter orientation relative to the plasma membrane, were isolated from 3T3-L1 adipocytes. The binding of biotinylated ATB-BMPA, a membrane impermeable bis-mannose containing photolabel, was determined in the presence of indinavir, ritonavir, atazanavir, tipranavir, and cytochalasin b. Zero-trans 2-deoxyglucose transport was measured in both 3T3-L1 fibroblasts and primary rat adipocytes acutely exposed to these compounds. PI inhibition of glucose transport correlated strongly with the PI inhibition of ATB-BMPA/transporter binding. At therapeutically relevant concentrations, ritonavir was not selective for GLUT4 over GLUT1. Indinavir was found to act as a competitive inhibitor of the cytoplasmic glucose binding site of GLUT4 with a K(I) of 8.2 μM. These data establish biotinylated ATB-BMPA as an effective probe to quantify accessibility of the endofacial glucose-binding site in GLUTs and reveal that the ability of PIs to block this site differs among drugs within this class. This provides mechanistic insight into the basis for the clinical variation in drug-related metabolic toxicity.  相似文献   

14.
Placental hypoxia has been implicated in pregnancy pathologies, including fetal growth restriction and preeclampsia; however, the mechanism by which the trophoblast cell responds to hypoxia has not been adequately explored. Glucose transport, a process crucial to fetoplacental growth, is upregulated by hypoxia in a number of cell types. We investigated the effects of hypoxia on the regulation of trophoblast glucose transporter (GLUT) expression and activity in BeWo choriocarcinoma cells, a trophoblast cell model, and human placental villous tissue explants. GLUT1 expression in BeWo cells was upregulated by the hypoxia-inducing chemical agents desferroxamine and cobalt chloride. Reductions in oxygen tension resulted in dose-dependent increases in GLUT1 and GLUT3 expression. Exposure of cells to hypoxic conditions also resulted in an increase in transepithelial glucose transport. A role for hypoxia-inducible factor (HIF)-1 was suggested by the increase in HIF-1 as a result of hypoxia and by the increase in GLUT1 expression following treatment of BeWo with MG-132, a proteasomal inhibitor that increases HIF-1 levels. The function of HIF-1 was confirmed in experiments where the hypoxic upregulation of GLUT1 and GLUT3 was inhibited by antisense HIF-1. In contrast to BeWo cells, hypoxia produced minimal increases in GLUT1 expression in explants; however, treatment with MG-132 did upregulate syncytial basal membrane GLUT1. Our results show that GLUTs are upregulated by hypoxia via a HIF-1-mediated pathway in trophoblast cells and suggest that the GLUT response to hypoxia in vivo will be determined not only by low oxygen tension but also by other factors that modulate HIF-1 levels. glucose transporter 1; glucose transporter 3; glucose transport  相似文献   

15.
Normal development of both human and rat brain is associated with a switch in metabolic fuel from a combination of glucose and ketone bodies in the immature brain to a nearly total reliance on glucose in the adult. The delivery of glucose, lactate, and ketone bodies from the blood to the brain requires specific transporter proteins, glucose and monocarboxylic acid transporter proteins (GLUTs and MCTs), respectively. Developmental expression of the GLUTs in rat brain, i.e., 55-kDa GLUT1 in the blood-brain barrier (BBB), 45-kDa GLUT1 and GLUT3 in vascular-free brain, corresponds to maturational increases in cerebral glucose uptake and utilization. It has been suggested that MCT expression peaks during suckling and sharply declines thereafter, although a comparable detailed study has not been done. This study investigated the temporal and regional expression of MCT1 and MCT2 mRNA and protein in the BBB and the nonvascular brain during postnatal development in the rat. The results confirmed maximal MCT1 mRNA and protein expression in the BBB during suckling and a decline with maturation, coincident with the switch to glucose as the predominant cerebral fuel. However, nonvascular MCT1 and MCT2 levels do not reflect changes in cerebral energy metabolism, suggesting a more complex regulation. Although MCT1 assumes a predominantly glial expression in postweanling brain, the concentration remains fairly constant, as does that of MCT2 in neurons. The maintenance of nonvascular MCT levels in the adult brain implies a major role for these proteins, in concert with the GLUTs in both neurons and astrocytes, to transfer glycolytic intermediates during cerebral energy metabolism.  相似文献   

16.
Glucose transport across the plasma membrane of mammalian cells is mediated by a family of homologous proteins. Each glucose transporter isoform has a specific tissue distribution which relates to that tissue's demand for glucose. The β-cells of pancreatic islets are known to express a distinct glucose transporter isoform, termed GLUT 2, which has a high Km for glucose. In this study, we examined the glucose transporter content of normal rat islets and three beta cell lines, β-TC, HIT and RIN cells. We show that at the protein level, GLUT 2 is the only detectable transporter isoform in normal islets, and that all three cell lines also express detectable GLUT 2. In contrast, all three cell lines expressed high levels of GLUT 1, but this isoform was not detected in normal islets. Neither the native islets nor any of the cell lines expressed GLUT 3. The insulin-responsive glucose transporter GLUT 4 was detected at very low levels in β-TC cells; to our knowledge, this is the only non-muscle or adipose cell line which expresses this isoform. We propose that the elevated level of GLUT 1 expression, together with a reduced expression of the high Km transporter GLUT 2, may account for the characteristics aberrant patterns of glucose-stimulated insulin release in cell lines derived from β-cells.  相似文献   

17.
18.
In most animal cells, transport of monosaccharides across the plasma membrane is mediated by glucose transporters (GLUT). Mammals express at least five distinct transporters (GLUTs 1--5), which are well characterised both functionally and genetically. In contrast, the glucose transport system of fish remains poorly studied. Here we report studies of hexose uptake in carp EPC cells and cloning of a glucose transporter cDNA from these cells. Transport of radio-labelled methylglucose (3-OMG) followed Michaelis--Menten kinetics with a K(m) value (8.5 mM) similar to that of mammalian cells. The inhibition of transport by cytochalasin B and phloretin, but not by phloridzin or cyanide, strongly suggested the existence of a facilitative carrier. D-Glucose, 2-deoxyglucose, 3-OMG, D-mannose and D-xylose were competitive inhibitors of 3-OMG uptake, while L-glucose, mannitol, D-fructose, D-ribose and sucrose did not compete with 3-OMG. We cloned a carp glucose transporter (CyiGLUT1), using RT-PCR and RACE strategies. CyiGLUT1 was different from known carp and zebrafish EST sequences. The complete cDNA (3060 bp) contained one open reading frame encoding a predicted protein of 478 amino acids. The deduced amino acid sequence shared 78% identity with mammalian and avian GLUT1 proteins. Key amino acids involved in substrate selection and catalysis of mammalian GLUTs were conserved in the carp transporter.  相似文献   

19.
Efficient transfer of glucose from the mother to the embryonic compartment is crucial to sustain the survival and normal development of the embryo in utero, because the embryo's production of this primary substrate for oxidative metabolism is minimal. In the present study, the temporal sequence of expression of the sodium-independent facilitative glucose transporter isoforms GLUTs 1, 3, 4, and 5 was investigated in the developing rat uteroembryonic unit between conception and Gestational Day 8 using immunohistochemistry. The GLUTs 1, 3, and 4 were expressed in the embryonic tissues after the start of implantation, being colocalized in the parietal endoderm, visceral endoderm, primary ectoderm, extraembryonic ectoderm, and the ectoplacental cone. In the uterus, a faint GLUT1 labeling emerged, but not until Gestational Day 3, in the luminal epithelium, endometrial stroma, and decidual cells. The intensity of GLUT1 staining increased in the latter population with progressing decidualization. Endometrial glands and myometrial smooth muscle cells stained neither for GLUT1 nor for GLUT3 until postimplantation. During all developmental stages examined, GLUT4 was visualized throughout the pregnant rat uterus, as was GLUT3 (with the above-mentioned exceptions). The density of GLUT5 was generally less than the sensitivity of the immunohistochemical detection method in all tissues investigated. In conclusion, the data point to a significant expression of the high-affinity glucose transporters GLUTs 1, 3, and 4 in the rat uteroembryonic unit, providing supportive evidence for an important role of facilitative glucose diffusion during peri-implantation development.  相似文献   

20.
Postmeiotic spermatogenic cells, but not meiotic spermatogenic cells respond differentially with glucose-induced changes in [Ca2+]i indicating a differential transport of glucose via facilitative hexose transporters (GLUTs) specifically distributed in the plasma membrane. Several studies have indicated that plasma membrane in mammalian cells is not homogeneously organized, but contains specific microdomains known as detergent-resistant membrane domains (DRMDs), lipid rafts or caveolae. The association of these domains and GLUTs isoforms has not been characterized in spermatogenic cells. We analyzed the expression and function of GLUT1 and GLUT3 in isolated spermatocytes and spermatids. The results showed that spermatogenic cells express both glucose transporters, with spermatids exhibiting a higher affinity glucose transport system. In addition, spermatogenic cells express caveolin-1, and glucose transporters colocalize with caveolin-1 in caveolin-enriched membrane fractions. Experiments in which the integrity of caveolae was disrupted by pretreatment with methyl-beta-cyclodextrin, indicated that the involvement of cholesterol-enriched plasma membrane microdomains were involved in the localization of GLUTs and uptake of 2-deoxyglucose. We also observed cofractionation of GLUT3 and caveolin-1 in low-buoyant density membranes together with their shift to higher densities after methyl-beta-cyclodextrin treatment. GLUT1 was found in all fractions isolated. Immunofluorescent studies indicated that caveolin-1, GLUT1, and hexokinase I colocalize in spermatocytes while caveolin-1, GLUT3, and hexokinase I colocalize in spermatids. These findings suggest the presence of hexose transporters in DRMDs, and further support a role for intact caveolae or cholesterol-enriched membrane microdomains in relation to glucose uptake and glucose phosphorylation. The results would also explain the different glucose-induced changes in [Ca2+]i in both cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号