首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isolation of a G0-specific ts mutant from a Fischer rat cell line, 3Y1   总被引:2,自引:0,他引:2  
A ts mutant clone, tsJT60, was isolated from Fisher rat cell line, 3Y1. During the exponential growth at both 34 and 39.5 degrees C, tsJT60 did not appear as ts mutant cells. However, once entered resting state (G0) under serum deprivation at the confluent state, they could re-enter S phase at 34 degrees C but could not at 39.5 degrees C following the stimulation of cells either by the addition of fetal bovine serum or by trypsinization and replating. These and other results suggested that tsJT60 is a G0-specific ts mutant, i.e., the cells have ts defect(s) in the function which is required for the stimulation from the resting state to S phase but not for the progression of the cell cycle in an exponential growth phase.  相似文献   

2.
Cultures of ts BN75, a temperature-sensitive mutant of BHK 21 cells, show a gradual biphasic drop in [3H]thymidine incorporation together with an accumulation of cells having a G2 DNA content when incubated at 39.5 degrees. However, when higher (41 degrees - 42 degrees) nonpermissive temperatures were used, the major block was in S-phase DNA synthesis. The cultures of ts BN75 shifted to 42 degrees at the start of the S phase, cell-cycle progress was arrested in the middle of S, while under these conditions wild-type BHK cells underwent at least one cycle of DNA synthesis. When ts BN75 cells growth-arrested at high temperature with a G2 DNA content were shifted to the permissive temperature (33.5 degrees C), the restart of DNA synthesis preceded the appearance of mitotic cells. These data suggest that the ts defect of ts BN75 cells might affect primarily the S phase of the cycle rather than the G2 phase.  相似文献   

3.
A temperature-sensitive mutant, ts2, of murine leukemic cells (L5178Y) loses its viability gradually at the non-permissive temperature (39 °C) but resumes normal growth when shifted to the permissive temperature (33 °C). At 39 °C the incorporation rate of thymidine is reduced on a per-cell-basis, whereas that of uridine and leucine is unchanged.Autoradiographic study indicates that the fraction of cells which can synthesize DNA decreases steadily with time of incubation at 39 °C. Accumulation of mitotic and multinucleate cells suggests that ts2 cells are defective in both mitosis and cytokinesis. Experiments using synchronized culture demonstrate that the cells shifted up atthe G2, but not at the G1 phase pass through the first mitotic phase normally.  相似文献   

4.
A temperature-sensitive mutant, designated tsFT101, was isolated from a mouse mammary carcinoma cell line, FM3A, and given an initial characterization. In this cell line, cytokinesis was blocked at a non-permissive temperature (39 degrees C), but DNA synthesis and nuclear division proceeded normally for at least 24 h at 39 degrees C as detected respectively by autoradiography and cytofluorometric analysis. As a result, multinucleate cells accumulated at 39 degrees C (more than 95% in 36 h). When the culture was returned to a permissive temperature (33 degrees C) after 24 h of arrest at 39 degrees C, cytokinesis was resumed and there was a rapid decrease in the number of multinucleate cells. At 39 degrees C, tsFT101 cells had less F-actin than cells at 33 degrees C, indicative of the existence of an abnormality in actin polymerization in this mutant.  相似文献   

5.
We have isolated a mutant clone from mouse FM3A cells with temperature-sensitive defects both in cytokinesis and in thymidine kinase enzyme activity. The clone, designated tsCl.B59, was isolated after mutagenesis at 33 degrees C followed by exposure to cytosine arabinoside at 39 degrees C. It was derived from a thymidine kinase deficient, 5-bromodeoxyuridine-resistant clone (S-BUCl.42) which was originally derived from wild-type clone H-5 of FM3A cells. The temperature-sensitive mutant clone grows normally at 33 degrees C, but not at 39 degrees C, where it exhibits an increased frequency of multinucleate cells due to defective cytokinesis. Unlike the parental S-BUCl.42 cells, which have negligible thymidine kinase activity and are unable to incorporate 3H-thymidine, the mutant in corporates substantial amounts of 3H-thymidine at 33 degrees C, although its thymidine kinase activity remains lower than that of wild-type H-5 cells. When cultures of tsCl.B59 cells are transferred to 39 degrees C, incorporation of 3H-thymidine decreases markedly. The decrease has been shown to be due to thermolability of the thymidine kinase in tsCl.B59 cells.  相似文献   

6.
The kinetics of binucleate cells, formed by the action of deoxyguanosine, are studied using three methods: in a population synchronized with hydroxyurea, by autoradiography after pulse-labelling, and in a sample of a cell population morphologically located at the M--G1 limit. Deoxyguanosine induces a slowing down in S and G2, independent of the inhibition of cytokinesis. It is only when it takes effect during the G2 stage that deoxyguanosine brings about the formation of binucleate cells.  相似文献   

7.
J Hatzfeld  G Buttin 《Cell》1975,5(2):123-129
A thermosensitive line (TS 111) was isolated from a suspension culture of Chinese hamster fibroblasts, using a BUdR suicide selection technique. In this line, cytokinesis is blocked at 39 degrees C. DNA and protein synthesis are not arrested but keep on at a steady rate. Giant cells are produced which accumulate either numerous nuclei or one big nucleus with several nucleoli and more than a hundred chromosomes. At each nuclear cycle, all the chromosomes in the cell appear to condense in a synchronous manner, although it is possible that not all the sets of chromosomes duplicate. When the culture is returned to the permissive temperature (34 degrees C) after a prolonged arrest at the restrictive temperature, cytokinesis resumes with early extrusion of karyoplasts from multinucleated cells. The division block is independent of cell density in suspension culture and is not prevented by cell contact when cells grow attached to Petri dishes. At 34 degrees C, a residual expression of the mutation is indicated by the presence of binucleate and up to 30% anucleate cells. A remarkable similarity and some synergism exists between the mutation and cytochalasin B effects.  相似文献   

8.
tsJT60 is a nonlethal temperature-sensitive (ts) mutant of a Fischer rat cell line (3Y1) classified as a G0 mutant; i.e., the ts defect is not expressed within the cell growth cycle but is expressed only between the G0 and S phase. tsJT60 clones transformed with oncogenes such as adenovirus E1A, polyoma large T, polyoma middle T, v-Ki-ras, and LTR activated c-myc, or with a chemical carcinogen N-methyl-N'-nitro-N-nitrosoguanidine, grew well at 34 degrees C. However, most of these clones grew slowly at 40 degrees C, producing many floating dead cells, and some clones were killed at 40 degrees C. When they were cultured under conditions inadequate for growth of untransformed cells, such as high cell density or serum restriction, they were killed at 40 degrees C. These and previous results from SV40- and adenovirus-transformed tsJT60 clones favour the idea that transformed tsJT60 cells occasionally enter the G0 phase and are metabolically imbalanced at 40 degrees C during self-stimulation from the G0 to S phase. We propose that a drug which exclusively block, G0-G1 transition would be cytocidal to transformed cells but cytostatic to normal cells.  相似文献   

9.
A large number of mutants that are temperature sensitive (ts) for growth have been isolated from mouse mammary carcinoma FM3A cells by an improved selection method consisting of cell synchronization and short exposures to restrictive temperature. The improved method increased the efficiency of isolating DNA ts mutants, which showed a rapid decrease in DNA-synthesizing ability after temperature shift-up. Sixteen mutants isolated by this and other methods were selected for this study. Flow microfluorometric analysis of these mutants cultured at a nonpermissive temperature (39 degrees C) for 16 h indicated that five clones were arrested in the G1 to S phase of the cell cycle, six clones were in the S to G2 phase, and two clones were arrested in the G2 phase. The remaining three clones exhibited 8C DNA content after incubation at 39 degrees C for 28 h, indicating defects in mitosis or cytokinesis. These mutants were classified into 11 complementation groups. All the mutants except for those arrested in the G2 phase and those exhibiting defects in mitosis or cytokinesis showed a rapid decrease in DNA synthesis after temperature shift-up without a decrease in RNA and protein synthesis. The polyomavirus DNA cell-free replication system, which consists of polyomavirus large tumor antigen and mouse cell extracts, was used for further characterization of these DNA ts mutants. Among these ts mutants, only the tsFT20 strain, which contains heat-labile DNA polymerase alpha, was unable to support the polyomavirus DNA replication. Analysis by DNA fiber autoradiography revealed that DNA chain elongation rates of these DNA ts mutants were not changed and that the initiation of DNA replication at the origin of replicons was impaired in the mutant cells.  相似文献   

10.
tsJT60 cells are G0-specific temperature-sensitive mutants of the cell cycle from Fischer rats i.e., they grow exponentially at both 34 degrees and 39.5 degrees C, but when stimulated with fetal bovine serum (FBS) from the resting state (G0) they enter S phase at 34 degrees C but not at 39.5 degrees C. Epidermal growth factor (EGF) also induced DNA synthesis, although weakly, in G0-arrested tsJT60 cells at 34 degrees C but failed at 39.5 degrees C. When G0-arrested tsJT60 cells were stimulated at 39.5 degrees C with FBS plus EGF, they entered S phase and divided. Somatomedin C, insulin, or transferrin had a weak effect in inducing DNA synthesis in G0-arrested cells when applied at 34 degrees C or with FBS at 39.5 degrees C. Fibroblast growth factor, platelet-derived growth factor, or 12-O-tetradecanoylphorbol 13-acetate had no such stimulatory effect at 39.5 degrees C. Binding of 125I-somatomedin C was not temperature-sensitive. Several other ts mutant cells that were blocked at 39.5 degrees C from entering S phase from the resting state following FBS addition were stimulated by FBS plus EGF at 34 degrees C but not at 39.5 degrees C.  相似文献   

11.
In vitro fusion of newt macrophages   总被引:1,自引:0,他引:1  
Spontaneous formation of multinucleate giant cells is often observed in in vitro cultures of peritoneal adherent macrophages from the newts, Notophthalmus viridescens and Taricha granulosa (urodele amphibians). The frequency of such giant cells in these cultures is increased by the addition of phorbol myristic acetate at the initiation of the cultures. This high frequency of multinucleate cells permitted us to evaluate whether multinucleate giant cells arise by cell fusion and/or by repeated nuclear division without cytokinesis. Cell fusion is readily detectable by scanning electron microscopy. To determine whether nuclear division without cytokinesis also occurs, some cultures were treated with colchicine to arrest mitotic figures; others were pulsed with tritiated thymidine to detect DNA synthesis. Mitotic figures were not seen in acridine orange-stained samples. In monolayers that were processed for autoradiography, only a few nuclei were marked with tritium. These observations suggest that nuclear division does not contribute significantly, if at all, to the formation of multinucleate giant cells from cultured newt peritoneal macrophages.  相似文献   

12.
The ts 2 derivative of BALB/c-3T3 mouse fibroblasts is a cell division cycle (cdc) mutant. Upon expression of the heat-sensitive defect, ts 2 cells arrest late in G1 at, or very near the G1/S traverse. This conclusion derives from three kinds of experiment. In the first the cells were brought to different stages of the cell cycle by physiological manipulation, or with specific anti-metabolites. They were then released from the resulting blocks, and their subsequent cell-cycle progression, at the permissive- and non-permissive temperature (npt), was followed. The second experiment was an execution point analysis. In the third, premature chromosome condensation was performed between metaphase HeLa cells and temperature-blocked ts 2 cells. The resulting prematurely-condensed chromosomes were largely of the morphotype of very late G1 cells. The ts 2 cells are prevented from expressing their defect by temporary incubation at 38.5 degrees C in the G0, non-cycling state and by prior arrest in early S phase, imposed by hydroxyurea treatment. Such prevention is not allowed ts 2 cells incubated at the npt in the absence of isoleucine, a procedure which brings cells to mid-G1 arrest.  相似文献   

13.
Studies were done to characterize a DNA-negative temperature-sensitive (ts) mutant of human adenovirus type 2, H2 ts111. The temperature-sensitive defect, which was reversible on shift-down in the absence of protein synthesis, was expressed as early as 2 h postinfection, and the results of density-labeling experiments are in agreement with at least a DNA replication initiation block. On shift-up, after allowing viral DNA synthesis at permissive temperatures, the newly synthesized viral DNA and the mature viral DNA were cleaved into fragments which sedimented as a broad peak with a mean coefficient of 10-12S. This cleavage was more marked in the presence of hydroxyurea as the DNA synthesis inhibitor. Parental DNA in infected cells was degraded to a much lesser extent regardless of the incubation temperature. In contrast, the parental DNA was strongly degraded when early gene expression was permitted at 33 degrees C before shift-up to 39.5 degrees C. Furthermore, cellular DNA was also degraded at 39.5 degrees C in ts111-infected cells, the rate of cleavage being related to the multiplicity of infection. This cleavage effect, which did not seem to be related to penton base-associated endonuclease activity, was also enhanced when early gene expression was allowed at 33 degrees C before shift-up. The ts111 defect, which was related to an initiation block and endonucleolytic cleavage of viral and cellular DNA, seemed to correspond to a single mutation. The implication of the ts111 gene product in protection of viral and cellular DNA by way of a DNase-inhibitory function is discussed.  相似文献   

14.
Bistratene A is a cyclic polyether which affects cell cycle progression and can induce phosphorylation of cellular proteins. Treatment of HL60 cells with 100 ng/ml bistratene A was found to inhibit cytokinesis but had no effect on DNA synthesis and nuclear division. Consequently, bistratene A-treated cells became polyploid and multinucleate. In association with the development of this phenotype, the cytoplasmic protein stathmin was biphasically phosphorylated and levels of expression were doubled. Immunostaining of binucleate cells (bistratene A for 24 h) revealed increased alpha-tubulin localization where the cleavage furrow might be expected to form, i.e., along the equatorial plane. Treatment of these binucleate cells with the microtubule depolymerizing agent nocadazole promoted cleavage furrow formation and partially ameliorated the bistratene A-induced block in cell division. These findings implicate the polymerization status of microtubules and stathmin function in the regulation of cytokinesis.  相似文献   

15.
We mutagenized RH delta hxgprt strain tachyzoites of Toxoplasma gondii using N-nitroso-N-ethylurea and analyzed 40 clonal isolates (of 3680 ENU mutants) that were unable to grow in cell culture at 40 degrees C. These isolates grew normally at 34 degrees C, but showed variable growth at temperatures between 34 and 39 degrees C. The inability to grow at 40 degrees C was also correlated with a loss of virulence in mice for those mutants examined. We further characterized the temperature-sensitive (ts) isolates using flow cytometry and propidium iodide staining and identified three types of cell cycle-related mutations. Regardless of temperature, in the isolates ts1C12, ts7B4, and ts7B10, the distribution of parasites with a haploid DNA content was substantially higher (congruent with 85%) than that observed for RH delta hxgprt (congruent with 60%). Four other isolates, ts4F6, ts6C11, ts8G10, and ts11F5, contained G1-related mutations, and in each case, the DNA distribution among parasites at the permissive temperature was similar to that of the parental strain, but at 40 degrees C only a single population containing a 1N nuclear DNA complement was evident. Furthermore, there was no evidence of nuclear division or cytokinesis at 40 degrees C, and these parasites demonstrated a distended cytoplasm typical of G1 arrest in other cell types. Finally, parasites of the ts11C9 mutant arrested in two near-equal populations with either 1N or 2N complements of nuclear DNA. All arrested ts11C9 parasites contained a single nucleus, and a major subfraction of the 2N population contained abnormal and incompletely formed daughters-indicating that the initiation of daughter formation can occur in the absence of nuclear division.  相似文献   

16.
tsJT16 is a cell cycle temperature-sensitive (ts) mutant from a Fischer rat cell line. When it is growth-stimulated from G0 phase it enters S phase at the permissive temperature (34 degrees C) but not at the nonpermissive temperature (40 degrees C). It induces a nuclear labile protein, p70, when it is stimulated from G0 phase at 34 degrees C, but not at 40 degrees C. In growing cell cycle it progresses through the S, G2 and M phases at both temperatures but fails to pass through G1 phase at 40 degrees C. Here we described that p70 was synthesized neither in the randomly growing cycle nor in the G1 phase synchronously progressing from M phase. The cells synchronized at early G1 phase by culturing in serum-free medium for 7.5 h from G1/S boundary induced c-fos and c-myc following serum addition, but under the same condition p70 was not synthesized. These results indicate that the synthesis of p70 is not required for progression of the G1 phase of the growing cycle and can be used as an exclusive marker of G0-S transition.  相似文献   

17.
Two temperature-sensitive (ts) mutants of mammalian cell lines (AF8 and cs4D3) that arrest in G1 at the nonpermissive temperature were fused with chick erythrocytes and the induction of DNA synthesis was studied in the resulting heterokaryons. While both AF8 and cs4D3 could induce DNA synthesis in chick nuclei at the permissive temperature, they both failed to do so when arrested in G1 at the nonpermissive temperature. When S phase AF8 cells were fused with chick erythrocytes, chick nuclei were reactivated even if the heterokaryons were incubated at the temperature nonpermissive for AF8. A third ts mutant, ts111, that is blocked in cytokinesis but continues to synthesize DNA, reactivated chick nuclei at both permissive and nonpermissive temperature. It is concluded that chick erythrocyte reactivation depends on the presence of S phase-specific factors.  相似文献   

18.
Synthesis of mature 28-S ribosomal RNA and 60-S ribosomal subunits is inhibited in baby hamster kidney (BHK) cell line ts 422E at non-permissive temperature (39 degrees C). This leads to a 66% decrease of total ribosomes per cell, a marked imbalance between the large and small ribosomal subunits in the cytoplasm and a decrease of cells per dish after prolonged culture at 30 degrees C. However, inhibition of ribosome synthesis does not affect progression of cells through the G1 period of the cell division cycle, the length of the pre-replicative period, and the rate of entry of cells into S phase. In contrast to culture at non-permissive temperature, culture of BHK ts 422E cells in the presence of 0.04 micrograms/ml actinomycin D at 33 degrees C inhibits markedly the entry into S period. It is concluded that low doses of actinomycin D exert their inhibitory effect on cell growth by preventing maturation and transport of mRNA rather than by interfering with ribosome synthesis. Microfluorometric analysis revealed only slight differences in the distribution of BHK ts 422E cells in G1, S and G2 phases of the cycle either when cultured at 33 degrees C or at 39 degrees C. When too few ribosomes per cell are produced in BHK ts 422E cells at 39 degrees C, cells do not seem to be arrested reversibly at a specific point of the cell cycle but rather to die at random.  相似文献   

19.
A temperature-sensitive cell-cycle mutant, tsJT16, which has been isolated from Fischer rat fibroblasts, was defective in the function(s) that operated soon after growth stimulation. When G0-arrested tsJT16 was stimulated to proliferate, it entered the S phase after 12-15 h at 34 degrees C but failed to do so at 40 degrees C. The function mutated in tsJT16 was required to be normal for the first 4 h or less for cells to transit from the G0 to S phase. The induction of cell-cycle-dependent genes such as c-fos, c-myc and ornithine decarboxylase was observed at both temperatures after growth stimulation. Although an increase in total protein synthesis occurred at both temperatures after growth stimulation, synthesis of one protein (p70) (pI 7.8 and Mr 70,000) was inhibited at 40 degrees C. Synthesis of p70 was negligible in G0-arrested cells and blocked by actinomycin D in serum-stimulated cells at 34 degrees C. These results suggest that tsJT16 has a ts defect in one of the signal transduction processes to induce gene activation. tsJT16 was also defective in progression of the G1 phase of growing cells, consistent with the previous results in which growth stimuli were required at G1 for continuation of proliferation.  相似文献   

20.
Summary In strain CL ofPhysarum polycephalum, multinucleate, haploid plasmodia form within clones of uninucleate, haploid amoebae. Analysis of plasmodium development, using time-lapse cinematography, shows that binucleate cells arise from uninucleate cells, by mitosis without cytokinesis. Either one or both daughter cells, from an apparently normal amoebal division, can enter an extended cell cycle (28.7 hours compared to the 11.8 hours for vegetative amoebae) that ends in the formation of a binucleate cell. This long cycle is accompanied by extra growth; cells that become binucleate are twice as big as amoebae at the time of mitosis. Nuclear size also increases during the extended cell cycle: flow cytometric analysis indicates that this is not associated with an increase over the haploid DNA content. During the extended cell cycle uninucleate cells lose the ability to transform into flagellated cells and also become irreversibly committed to plasmodium development. It is shown that commitment occurs a maximum of 13.5 hours before binucleate cell formation and that loss of ability to flagellate precedes commitment by 3–5 hours. Plasmodia develop from binucleate cells by cell fusions and synchronous mitoses without cytokinesis.Abbreviations CL Colonia Leicester - DSDM Dilute semi-defined medium - FKB Formalin killed bacterial suspension - IMT Intermitotic time - LIA Liver infusion agar - SBS Standard bacterial suspension - SDM Semi-defined medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号