首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The polymerase chain reaction (PCR) was used on DNA obtained from various normal lymphoid tissues to amplify chimeric TCR gene rearrangements involving J segments of the beta gene and V segments of the gamma or delta genes. As found previously for the transrearrangements between the gamma and delta genes, transrearrangements involving the beta gene were more abundant in DNA of the thymus than in DNA of the spleen, lymph node, bone marrow, or PBL. In addition, transrearrangements between Ig H chain V region segment and J segment of TCR delta chain were also found in DNA of normal thymus. Sequence analysis of the trans-rearrangement PCR products revealed structures closely resembling normal intragenic rearrangements, with N insertions and often D segments at the junctions between segments. The sequences analyzed suggest that transrearrangements arise through the action of normal lymphocyte recombinase, involve trans recognition of heptamer/nonamer recombination signals, and follow the 12 + 23 spacer rule. To test whether transrearrangements result from chromosomal rearrangements with breakpoints at the sites of Ag receptor genes, PCR was performed on the DNA of PBL from patients with ataxia telangiectasia, a disorder in which circulating lymphocytes often have numerous karyotypic abnormalities with breakpoints at the cytogenetic positions of these genes. Comparison of the results of PCR on this DNA and that of normal tissues demonstrated a substantially increased frequency for most types of transrearrangements investigated. These results support the interpretation that transrearrangement among TCR genes may occur by chromosomal rearrangement.  相似文献   

2.
3.
Thymocytes in mutant mice with severe combined immunodeficiency (scid thymocytes) show ongoing recombination of some T-cell receptor delta gene elements, generating signal joints quantitatively and qualitatively indistinguishable from those in wild-type fetal thymocytes. Excised D delta 2-J delta 1 and D delta 1-D delta 2 rearrangements are detectable at levels equivalent to or greater than those in thymocytes from wild-type mice on fetal day 15. Signal junctional modification, shown here to occur frequently in wild-type adult but not newborn excised D delta 2-J delta 1 junctions, can occur normally in adult scid thymocytes. Excised D delta 1-D delta 2 scid junctions, similar to wild-type thymocytes, include pseudonormal coding junctions as well as signal junctions. Inversional D delta 1-D delta 2 rearrangements, generating conventional hybrid junctions, are also reproducibly detectable in scid thymus DNA. These hybrids, unlike those reported for artificial recombination constructs, do not show extensive nucleotide loss. In contrast to the normal or high incidences of D delta 1-, D delta 2-, and J delta 1-associated signal junctions in scid thymocytes, V delta 1, V gamma 3, and V gamma 1.2 signal products are undetectable in scid thymocytes or are detectable at levels at least 10-fold lower than the levels in wild-type fetal thymocytes. These findings confirm biased T-cell receptor element recombination by V(D)J recombinase activity of nontransformed scid thymocytes and indicate that analysis of in vivo-mediated gene rearrangements is important for full understanding of how the scid mutation arrests lymphocyte development.  相似文献   

4.
The nature of TCR gamma and delta gene rearrangements in 4- to 6-week-old scid thymocytes was examined by using the polymerase chain reaction technique, cloning, and DNA sequencing. Analysis of 78 sequences indicates that TCR gamma and delta gene rearrangements in scid mice generally resemble those in thymocytes from normal young adult mice. V gamma 1, V gamma 2, and V gamma 5 rearrangements are heterogeneous, with extensive N region addition and nucleotide excision from the recombining coding segments. In addition, homogeneous and fetal-like V gamma 3, V gamma 4, and V delta 1 rearrangements are observed. These rearrangements are currently difficult to interpret but may be significant with respect to whether certain homogeneous joints in normal mice are due to cellular selection or to the rearrangement process. scid TCR gamma and delta gene nucleotide sequences also reveal direct V-J delta joining, inter-(V-J-C gamma) cluster joining, and the possibility of inversional rearrangement at the gamma locus. Short sequence homologies may contribute to V(D)J recombination and to the rescue of blocked coding joints.  相似文献   

5.
V gamma 3 T cell receptor rearrangement and expression in the adult thymus.   总被引:3,自引:0,他引:3  
Rearrangement and expression of the V gamma 3-J gamma 1 TCR has been found in murine dendritic epidermal cells (DEC) and fetal thymus. By using the polymerase chain reaction technique, V gamma 3-J gamma 1 rearrangements and RNA expression were detected in the murine adult thymus. Individual genomic and cDNA junctions were cloned and sequenced. In genomic DNA, 55% (16/29) of V gamma 3-J gamma 1 junctional sequences had N regions ranging in length from 1 to 12 nucleotides resulting in considerable junctional diversity. Only 5% (2/42) of cDNA sequences had N regions. The canonical DEC sequence represented 36% (15/42) of the cDNA sequences. Thus, fetal-type V gamma 3-J gamma 1 rearrangements lacking N regions were preferentially expressed in adult thymocytes, some of which may be DEC precursors. The developmental stages in which V gamma 3-J gamma 1 rearrangements are generated were studied by using polymerase chain reaction to detect circular rearrangement products. Active V gamma 3-J gamma 1 rearrangement was detected in thymuses from fetal, newborn, and 2-wk-old mice but not in 5-wk or 8-wk-old (adult) mice. V gamma 2, one of the most common V gamma rearrangements in the adult, was found to be actively rearranging to J gamma 1 in the adult thymus. However, V gamma 2-V gamma 3 replacement rearrangement was not found. These results support the hypotheses that adult thymocytes with rearranged V gamma 3-J gamma 1 are persistent from earlier developmental stages and represent a separate lineage from those with V gamma 2-J gamma 1 rearrangements.  相似文献   

6.
Lymphocyte development requires the assembly of antigen receptor genes through the specialized process of V(D)J recombination. This process is initiated by cleavage at the junction between coding segments (V, D, and J) and the recombination signal sequences that border these segments, resulting in generation of double-strand break intermediates. We have used a two-dimensional gel system to characterize broken molecules arising from V(D)J recombination at the T-cell receptor (TCR) delta locus and have identified linear species excised by Ddelta1-Ddelta2 and V-Ddelta2 rearrangement in thymus DNA. Relatively few (approximately 10) V-Ddelta2-excised linear species were detected in DNA from fetal thymocytes. The sizes of these species corresponded to the estimated distances between Ddelta2 and the V gene segments utilized by gammadelta T cells and indicated that both Ddelta2-proximal and -distal V gene segments are targeted for V-Ddelta2 rearrangement. Similar-sized species were observed in DNA from thymocytes of scid mice in which T-cell development is arrested prior to TCR expression. Since previous studies suggest that the TCR alpha/delta locus encodes more than 100 V gene segments, our results indicate that a few select V gene segments are predominantly targeted for rearrangement to Ddelta2, and this primarily accounts for the restricted Vdelta gene repertoire of gammadelta T cells.  相似文献   

7.
8.
K Okazaki  H Sakano 《The EMBO journal》1988,7(6):1669-1674
We have characterized thymocyte circular DNA excised from the T cell receptor alpha-delta gene complex. Some delta gene clones contained unusual recombinant structures derived from V-(D)-J joining: (i) a reciprocal joint of direct V to J delta joining, skipping the D delta segment; (ii) a V-D delta coding joint lacking an adjacent D delta-J delta coding joint; (iii) a V- D structure containing two D delta segments. Many of the alpha gen clones contained both coding and reciprocal joints of V alpha-to-J alpha joining on the same structure. Most of these coding joints were out of phase; however, in one clone there was an in-phase V-J alpha structure. Interestingly, some alpha gene clones contained the same V gene sequence as rearranged in the delta gene clone, indicating that the same V gene family, at least in part, could be utilized for both the alpha and delta gene systems.  相似文献   

9.
Separate genetic elements (V, D, and J) encode the variable regions of lymphocyte antigen receptors. During early lymphocyte differentiation, these elements rearrange to form contiguous coding segments (VJ and VDJ) for a diverse array of variable regions. Rearrangement is mediated by a recombinase that recognizes short DNA sequences (signals) flanking V, D, and J elements. Signals flank both the 5' and 3' sides of each D element, thereby allowing assembly of a functional VDJ gene. However, in rearrangements involving the D delta 2 and J delta 1 elements of the mouse T-cell receptor delta (TCR delta) locus, we unexpectedly found that the D delta 2 element and a portion of its 5' signal are often deleted. Approximately 50% of recovered D delta 2 to J delta 1 rearrangements from thymocytes of adult wild-type mice showed such deletions. An additional 20% of the rearrangements contained standard D delta 2-J delta 1 coding junctions but showed some loss of nucleotides from the 5' D delta 2 signal. This loss was clearly associated with another event involving a site-specific cleavage at the 5' signal/coding border of D delta 2 and rejoining of the modified signal and coding ends. The abnormal loss of D delta 2 and a portion of the 5' D delta 2 signal was infrequently observed in D delta 2-to-J delta 1 rearrangements recovered from neonatal mice. The possible basis and significance of this age-dependent phenomenon are discussed.  相似文献   

10.
BACKGROUND: Interactions between gamma delta T cells and heat shock proteins (HSP) have been proposed as contributing factors in a number of diseases of possible autoimmune etiology but definitive evidence to support this hypothesis has been lacking. In multiple sclerosis (MS), a chronic inflammatory neurologic disease, HSP and gamma delta T cells are known to colocalize in brain lesions. Analysis of T cell receptor (TCR) gene usage in these lesions has detected evidence of clonality within both the V delta 2-J delta 1 and V delta 2-J delta 3 populations of gamma delta T cells. In our own studies, using direct sequence analysis, a dominant V delta 2-J delta 3 TCR sequence was found in 9 MS brain samples, suggesting a response to a common antigen. In this report, we have examined gamma delta T cell receptor gene usage in MS peripheral blood T cell lines selected for reactivity to HSP 70. MATERIALS AND METHODS: TCR rearrangement patterns for V delta 2-J delta 1 and V delta 2-J delta 3 were studied using the polymerase chain reaction (PCR) and a direct sequencing technique in populations of peripheral blood mononuclear cells (PBMC) cultured with Mycobacterium tuberculosis (M. tuberculosis) purified protein derivative (PPD) and then selected for reactivity to a 70-kD heat shock protein (HSP70). Cells were obtained from health donors, patients with MS, and patients with tuberculosis (TB). PCR products were subjected to direct sequence analysis to look for evidence for clonality within these T cell lines and to define the sequence of the V-D-J (CDR3) region of the TCR. RESULTS: In freshly isolated PBMC, both V delta 2-J delta 1 and V delta 2-J delta 3 gene rearrangement patterns were detected, whereas in HSP70+ T cell lines the predominant delta chain rearrangement pattern was V delta 2-J delta 3. Direct sequence analyses indicated that in cells reactive with HSP70 the V delta 2-J delta 3 sequences were usually oligoclonal and used D delta 3 exclusively. In four of four MS and two of three TB patients, the oligoclonal sequences in the HSP70+ T cell lines were identical to one another and to a dominant sequence previously detected in MS brain lesions. In two of three HSP70+ T cell lines from healthy controls, the oligoclonal sequences differed from those found in both groups of patients but were identical to one another except for a small region of heterogeneity in the second N region. In contrast, in freshly isolated PBMC or in PPD+HSP70- T cell lines, the V delta 2-J delta 3 gene rearrangement patterns were usually polyclonal and dominant sequences were rarely identified. CONCLUSIONS: These results support the conclusion that a subpopulation of gamma delta T cells in MS lesions are responding to HSP 70 and that non-CNS-specific antigens contribute to the pathogenesis of MS.  相似文献   

11.
Mammalian TCR delta genes are located in the midst of the TCR alpha gene locus. In the chicken, one large V delta gene family, two D delta gene segments, two J delta gene segments, and one C delta gene have been identified. The TCR delta genes were deleted on both alleles in alpha beta T cell lines, thereby indicating conservation of the combined TCR alpha delta locus in birds. V alpha and V delta gene segments were found to rearrange with one, both or neither of the D delta segments and either of the two J delta segments. Exonuclease activity, P-addition, and N-addition during VDJ delta rearrangement contributed to TCR delta repertoire diversification in the first embryonic wave of T cells. An unbiased V delta 1 repertoire was observed at all ages, but an acquired J delta 1 usage bias occurred in the TCR delta repertoire. The unrestricted combinatorial diversity of relatively complex TCR gamma and delta loci may contribute to the remarkable abundance of gamma delta T cells in this avian representative.  相似文献   

12.
T cells can be divided into two groups on the basis of the expression of either alpha beta or gamma delta T-cell receptors (TCRs). Because the TCR delta chain locus lies within the larger TCR alpha chain locus, control of the utilization of these two receptors is important in T-cell development, specifically for determination of T-cell type: rearrangement of the alpha locus results in deletion of the delta coding segments and commitment to the alpha beta lineage. In the developing thymus, a relative site-specific recombination occurs by which the TCR delta chain gene segments are deleted. This deletion removes all D delta, J delta, and C delta genes and occurs on both alleles. This delta deletional mechanism is evolutionarily conserved between mice and humans. Transgenic mice which contain the human delta deleting elements and as much internal TCR delta chain coding sequence as possible without allowing the formation of a complete delta chain gene were developed. Several transgenic lines showing recombinations between deleting elements within the transgene were developed. These lines demonstrate that utilization of the delta deleting elements occurs in alpha beta T cells of the spleen and thymus. These recombinations are rare in the gamma delta population, indicating that the machinery for utilization of delta deleting elements is functional in alpha beta T cells but absent in gamma delta T cells. Furthermore, a discrete population of early thymocytes containing delta deleting element recombinations but not V alpha-to-J alpha rearrangements has been identified. These data are consistent with a model in which delta deletion contributes to the implementation of a signal by which the TCR alpha chain locus is rearranged and expressed and thus becomes an alpha beta T cell.  相似文献   

13.
Bulk populations and 39 hybridomas from splenic Con A cultures were analyzed for rearrangements among TCR genes: alpha, beta, gamma, and delta. Patterns were categorized to reveal general rules governing gene rearrangement within the activated adult peripheral population. Many patterns of gene rearrangement were consistent with previous studies of T cell lines. Additional points of interest were the following: 1) A large proportion of Con A-stimulated splenic cells bore no TCR gene rearrangements. 2) One splenic hybridoma exhibited an unusual gene pattern, with rearrangements, at alpha and beta, but not J gamma 1 or J gamma 2 loci. 3) Multiple gamma rearrangements were noted other than V1.2-J2 and V2-J1. 4) One hybridoma exhibited TCR gene rearrangements typical of day 14 to 15 fetal thymocytes, as well as rearrangements at immunoglobulin gene loci. 5) Among hybridomas with J alpha rearrangements, homologous chromosomes exhibited rearrangements at similar positions along the J alpha locus.  相似文献   

14.
15.
16.
J E Hesse  M R Lieber  M Gellert  K Mizuuchi 《Cell》1987,49(6):775-783
Sequences encoding immunoglobulin variable domains are known to be assembled from variable (V), diversity (D), and joining (J) segments by site-specific recombination. We present a sensitive and rapid assay for V-(D)-J recombination that uses plasmid DNA transiently introduced into transformed pre-B cells, and demonstrates that the recombination is independent of any unique chromosomal context. Sequences sufficient to constitute recombination sites are contained within the 84 and 42 bp flanking, respectively, the murine J kappa 1 and V kappa L8 segments, which include the known heptamer-nonamer V-(D)-J joining signals. Deletion and inversion occur at comparable frequencies. Thus, V-(D)-J recombination may be relatively insensitive to the topological arrangement of sites, and events at the two novel junctions produced by the reaction may be coupled.  相似文献   

17.
V(D)J rearrangements occur within loci of TCR and BCR genes, thus generating the diversity of the AgR repertoire. In addition, interlocus V(D)J rearrangements occur, giving rise to so-called "trans-rearrangements." Such trans-rearrangements increase the diversity of the immune receptor repertoire and can be expressed as functional chimeric TCR proteins on the surface of T cells. Although chimeric receptors are not pathogenic per se, the frequency of AgR trans-rearrangements correlates with the level of genetic instability and thus could be used as a predictive biomarker for lymphoma risk.  相似文献   

18.
The process of assembling immunoglobulin and T-cell receptor genes from variable (V), diversity (D), and joining (J) gene segments, called V(D)J recombination, involves the introduction of DNA breaks at recombination signals. DNA cleavage is catalyzed by RAG-1 and RAG-2 in two chemical steps: first-strand nicking, followed by hairpin formation via direct transesterification. In vitro, these reactions minimally proceed in discrete protein-DNA complexes containing dimeric RAG-1 and one or two RAG-2 monomers bound to a single recombination signal sequence. Recently, a DDE triad of carboxylate residues essential for catalysis was identified in RAG-1. This catalytic triad resembles the DDE motif often associated with transposase and retroviral integrase active sites. To investigate which RAG-1 subunit contributes the residues of the DDE triad to the recombinase active site, cleavage of intact or prenicked DNA substrates was analyzed in situ in complexes containing RAG-2 and a RAG-1 heterodimer that carried an active-site mutation targeted to the same or opposite RAG-1 subunit mutated to be incompetent for DNA binding. The results show that the DDE triad is contributed to a single recombinase active site, which catalyzes the nicking and transesterification steps of V(D)J recombination by a single RAG-1 subunit opposite the one bound to the nonamer of the recombination signal undergoing cleavage (cleavage in trans). The implications of a trans cleavage mode observed in these complexes on the organization of the V(D)J synaptic complex are discussed.  相似文献   

19.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

20.
The V(D)J recombinase recognizes a pair of immunoglobulin or T-cell receptor gene segments flanked by recombination signal sequences and introduces double-strand breaks, generating two signal ends and two coding ends. Broken coding ends were initially identified as covalently closed hairpin DNA molecules. Before recombination, however, the hairpins must be opened and the ends must be modified by nuclease digestion and N-region addition. We have now analyzed nonhairpin coding ends associated with various immunoglobulin gene segments in cells undergoing V(D)J recombination. We found that these broken DNA ends have different nonrandom 5′-strand deletions which were characteristic for each locus examined. These deletions correlate well with the sequence characteristics of coding joints involving these gene segments. In addition, unlike broken signal ends, these nonhairpin coding-end V(D)J recombination reaction intermediates have 3′ overhanging ends. We discuss the implications of these results for models of how sequence modifications occur during coding-joint formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号