首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raveh A  Cooper A  Guy-David L  Reuveny E 《Cell》2010,143(5):750-760
G protein-coupled receptors (GPCRs) respond to agonists to activate downstream enzymatic pathways or to gate ion channel function. Turning off GPCR signaling is known to involve phosphorylation of the GPCR by GPCR kinases (GRKs) to initiate their internalization. The process, however, is relatively slow and cannot account for the faster desensitization responses required to regulate channel gating. Here, we show that GRKs enable rapid desensitization of the G protein-coupled potassium channel (GIRK/Kir3.x) through a mechanism independent of their kinase activity. On GPCR activation, GRKs translocate to the membrane and quench channel activation by competitively binding and titrating G protein βγ subunits away from the channel. Of interest, the ability of GRKs to effect this rapid desensitization depends on the receptor type. The findings thus reveal a stimulus-specific, phosphorylation-independent mechanism for rapidly downregulating GPCR activity at the effector level.  相似文献   

2.
G protein-coupled receptor kinases (GRKs) are key modulators of G protein-coupled receptor (GPCR) signaling. They constitute a family of seven mammalian serine-threonine protein kinases that phosphorylate agonist-bound receptor. GRKs-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling and desensitization. Activity of GRKs and subcellular targeting is tightly regulated by interaction with receptor domains, G protein subunits, lipids, anchoring proteins and calcium sensitive proteins. Moreover, GRK phosphorylation by several other kinases and autophosphorylation have recently been shown to modulate its functionality. This review summarize our current knowledge of GRKs regulatory mechanisms and GRKs physiological function.  相似文献   

3.
Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation. G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled receptor (GPCR) desensitization. Subsequent studies revealed that GRK is a family composed of seven isoforms (GRK1–GRK7). Each GRK shows a differential expression pattern. GRK1, GRK4, and GRK7 are expressed in limited tissues. In contrast, GRK2, GRK3, GRK5, and GRK6 are ubiquitously expressed throughout the body. The roles of GRKs in GPCR desensitization are well established. When GPCRs are activated by their agonists, GRKs phosphorylate serine/threonine residues in the intracellular loops and the carboxyl-termini of GPCRs. Phosphorylation promotes translocation of β-arrestins to the receptors and inhibits further G protein activation by interrupting receptor-G protein coupling. The binding of β-arrestins to the receptors also helps to promote receptor internalization by clathrin-coated pits. Thus, the GRK-catalyzed phosphorylation and subsequent binding of β-arrestin to GPCRs are believed to be the common mechanism of GPCR desensitization and internalization. Recent studies have revealed that GRKs are also involved in the β-arrestin-mediated signaling pathway. The GRK-mediated phosphorylation of the receptors plays opposite roles in conventional G protein- and β-arrestin-mediated signaling. The GRK-catalyzed phosphorylation of the receptors results in decreased G protein-mediated signaling, but it is necessary for β-arrestin-mediated signaling. Agonists that selectively activate GRK/β-arrestin-dependent signaling without affecting G protein signaling are known as β-arrestin-biased agonists. Biased agonists are expected to have potential therapeutic benefits for various diseases due to their selective activation of favorable physiological responses or avoidance of the side effects of drugs. Furthermore, GRKs are recognized as signaling mediators that are independent of either G protein- or β-arrestin-mediated pathways. GRKs can phosphorylate non-GPCR substrates, and this is found to be involved in various physiological responses, such as cell motility, development, and inflammation. In addition to these effects, our group revealed that GRK6 expressed in macrophages mediates the removal of apoptotic cells (engulfment) in a kinase activity-dependent manner. These studies revealed that GRKs block excess stimulus and also induce cellular responses. Here, we summarized the involvement of GRKs in β-arrestin-mediated and G protein-independent signaling pathways.  相似文献   

4.
5.
G protein-coupled receptors (GPCRs) mediate diverse signaling processes, including olfaction. G protein-coupled receptor kinases (GRKs) are important regulators of G protein signal transduction that specifically phosphorylate activated GPCRs to terminate signaling. Despite previously described roles for GRKs in GPCR signal downregulation, animals lacking C. elegans G protein-coupled receptor kinase-2 (Ce-grk-2) function are not hypersensitive to odorants. Instead, decreased Ce-grk-2 function in adult sensory neurons profoundly disrupts chemosensation, based on both behavioral analysis and Ca(2+) imaging. Although mammalian arrestin proteins cooperate with GRKs in receptor desensitization, loss of C. elegans arrestin-1 (arr-1) does not disrupt chemosensation. Either overexpression of the C. elegans Galpha subunit odr-3 or loss of eat-16, which encodes a regulator of G protein signaling (RGS) protein, restores chemosensation in Ce-grk-2 mutants. These results demonstrate that loss of GRK function can lead to reduced GPCR signal transduction and suggest an important role for RGS proteins in the regulation of chemosensation.  相似文献   

6.
We describe the 2.6-A crystal structure of human G protein-coupled receptor kinase (GRK)-6, a key regulator of dopaminergic signaling and lymphocyte chemotaxis. GRK6 is a member of the GRK4 subfamily of GRKs, which is represented in most, if not all, metazoans. Comparison of GRK6 with GRK2 confirms that the catalytic core of all GRKs consists of intimately associated kinase and regulator of G protein signaling (RGS) homology domains. Despite being in complex with an ATP analog, the kinase domain of GRK6 remains in an open, presumably inactive conformation, suggesting that G protein-coupled receptors activate GRKs by inducing kinase domain closure. The structure reveals a putative phospholipid-binding site near the N terminus of GRK6 and structural elements within the kinase substrate channel that likely influence G protein-coupled receptor access and specificity. The crystalline GRK6 RGS homology domain forms an extensive dimer interface using conserved hydrophobic residues distinct from those in GRK2 that bind Galpha(q), although dimerization does not appear to occur in solution and is not required for receptor phosphorylation.  相似文献   

7.
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied G protein-coupled receptors, leading to receptor desensitization. Seven GRKs, designated GRK1 through 7, have been characterized. GRK5 is negatively regulated by protein kinase C. We investigated whether human substance P receptor (hSPR) is a substrate of GRK5. We report that membrane-bound hSPR is phosphorylated by purified GRK5, and that both the rate and extent of phosphorylation increase dramatically in the presence of substance P. The phosphorylation has a high stoichiometry (20+/-4 mol phosphate/mol hSPR) and a low K(m) (1.7+/-0.1 nM). These data provide the first evidence that hSPR is a substrate of GRK5.  相似文献   

8.
Berberine (BBR), an effective compound of Chinese traditional herbal medicine, has preventive effects on diabetes and its complications. In this study, we investigated the therapeutic effects and underlying molecular mechanisms of BBR in rats with high-fat diet and streptozotocin (STZ)-induced diabetic nephropathy model. BBR (50, 100, 200 mg/kg/d) were orally administered to male Sprague–Dawley rats after STZ injection and conducted for 8 weeks. Renal damage was evaluated by kidney weight to body weight ratio (KW/BW), urine microalbumin (UMAlb), urine protein for 24 h (UP24 h), urine creatinine (UCr), and histological examination. Type IV collagen and transforming growth factor-beta1 (TGF-β1) were detected by immunohistochemistry and ultrastructure of glomeruli was observed. Fasting blood glucose (FBG),serum creatinine (SCr), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-c), low-density lipoprotein-cholesterol (LDL-c) in serum and G protein-coupled receptor kinases (GRKs), cAMP in kidney were measured. Remarkable renal damage, hyperglycemia and hyperlipidemia were observed in DN rats. BBR could restore renal functional parameters, suppress alterations in histological and ultrastructural changes in the kidney tissues, improve glucose and lipid metabolism disorders, and increase cAMP levels compared with those of DN model group. Furthermore, BBR down-regulated total protein expression of GRK2, GRK3 and up-regulated expression of GRK6 of renal cortex in DN rats, but had a slight effects on GRK4 and GRK5. These studies demonstrate, for the first time, that BBR exerts renoprotection in high-fat diet and STZ-induced DN rats by modulating the proteins expression of GRKs in G protein- AC-cAMP signaling pathway.  相似文献   

9.
Classically, G protein-coupled receptors (GPCRs) relay signals by directly activating heterotrimeric guanine nucleotide-binding proteins (G proteins). Increasing evidence indicates that GPCRs may also signal through G protein-independent pathways. JAK/STATs, Src-family tyrosine kinases, GRKs/beta-arrestins, and PDZ domain-containing proteins have been suggested to directly relay signals from GPCRs independent of G proteins. In addition, our laboratory recently reported that the beta(2) adrenergic receptor (beta(2)AR) could switch from G protein-coupled to G protein-independent ERK (extracellular signal-regulated kinase) activation in an agonist dosage-dependent manner. This finding provides a novel mechanism for G protein-independent GPCR signaling. This review focuses on recent progress in understanding the mechanisms by which G protein-independent GPCR signaling occurs.  相似文献   

10.
G protein-coupled receptor kinases (GRKs) initiate pathways leading to agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. However, the role of GRKs in modulation of signaling properties of native receptors has not been clearly defined. Here we addressed this question by generating Chinese hamster ovary (CHO) cells stably expressing a dominant-negative mutant of GRK2 (DN-GRK2), K220R, using retrovirally mediated gene transfer, and we assessed function of the endogenously expressed calcitonin (CT) receptors. We found that CT-mediated responses were prominently enhanced in CHO cells expressing DN-GRK2 compared with mock-infected control CHO cells with approximately 3-fold increases in CT-promoted cAMP production in whole cells and adenylyl cyclase activity in membrane fractions. CT-promoted phosphoinositide hydrolysis was also enhanced in DN-GRK2 cells. The number of CT receptors was increased approximately 3-fold in DN-GRK2 cells, as assessed by (125)I-salmon CT-specific binding, and this was associated with increased CT receptor mRNA levels. These results indicate that DN-GRK2 has multiple consequences for CT receptor signaling, but a primary effect is an increase in CT receptor mRNA and receptor number and, in turn, enhanced CT receptor signaling. As such, our findings provide a mechanistic basis for previous observations regarding agonist-promoted down-regulation of CT receptors and for resistance and escape from response to CT in vitro and in vivo. Moreover, the data suggest that blunting of receptor desensitization by DN-GRK2 blocks a GRK-mediated tonic inhibition of CT receptor expression and response. We speculate that GRKs play a similar role for other G protein-coupled receptors as well.  相似文献   

11.
RGS expression rate-limits recovery of rod photoresponses   总被引:11,自引:0,他引:11  
Signaling through G protein-coupled receptors (GPCRs) underlies many cellular processes, yet it is not known which molecules determine the duration of signaling in intact cells. Two candidates are G protein-coupled receptor kinases (GRKs) and Regulators of G protein signaling (RGSs), deactivation enzymes for GPCRs and G proteins, respectively. Here we investigate whether GRK or RGS governs the overall rate of recovery of the light response in mammalian rod photoreceptors, a model system for studying GPCR signaling. We show that overexpression of rhodopsin kinase (GRK1) increases phosphorylation of the GPCR rhodopsin but has no effect on photoresponse recovery. In contrast, overexpression of the photoreceptor RGS complex (RGS9-1.Gbeta5L.R9AP) dramatically accelerates response recovery. Our results show that G protein deactivation is normally at least 2.5 times slower than rhodopsin deactivation, resolving a long-standing controversy concerning the mechanism underlying the recovery of rod visual transduction.  相似文献   

12.
Hundreds of extracellular stimuli are received by cells via the pathways consisting of three basic components: cell-surface receptors, heterotrimeric G proteins, and intracellular effector enzymes or ion channels. A number of additional molecules, including G protein-coupled receptor kinases (GRKs), phosducin and Ca(2+)-binding proteins modulate signal transduction through these cascades. Understanding how these universal pathways work requires a detailed analysis of the interactions between these proteins. The recently emerged technology of surface plasmon resonance (SPR) can study protein-protein interactions by measuring not only the equilibrium binding constants, but also the association and dissociation rates. This article reviews experimental design used by researchers to analyze different components of the G protein pathway by SPR and focuses on the insights this technique provides regarding the kinetics, structure-function aspects and regulation of specific molecular events in the cascade.  相似文献   

13.
Conclusion  Membrane association is essential for GRK function and because of this the GRKs have evolved complex regulatory mechanisms for associating with the membrane. Although the GRKs are highly homologous, each kinase utilizes a distinct mechanism for associating with the membrane, which makes it unique within the family. Initially, the carboxyl terminus of the GRKs was identified as the “membrane association domain” but recent evidence suggests that the amino terminus may also play a critical role in localizing the kinases to the membrane (Murga et al., 1996; Pitcher et al, 1996). It is within these two domains that the GRKs are most variable at the amino acid level. The GRKS exhibit an absolute requirement for phospholipids not only for association with the membrane but also for activity. There are differences in preference and binding sites for the phospholipids within the GRK family, which may reflect differential targeting of the GRKs to G protein-coupled receptors situated in different lipid environments. There are hundreds of G protein-coupled receptors and only six known GRKs. All the GRKs appear to phosphorylate the same receptor substrates in vitro (Sterne-Marr & Benovic, 1995; Premont et al., 1995). Receptor specificity, in a cellular  相似文献   

14.
G protein-coupled receptor (GPCR) kinases (GRKs) play key role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors, promoting high affinity binding of arrestins, which precludes G protein coupling. Direct binding to active GPCRs activates GRKs, so that they selectively phosphorylate only the activated form of the receptor regardless of the accessibility of the substrate peptides within it and their Ser/Thr-containing sequence. Mammalian GRKs were classified into three main lineages, but earlier GRK evolution has not been studied. Here we show that GRKs emerged at the early stages of eukaryotic evolution via an insertion of a kinase similar to ribosomal protein S6 kinase into a loop in RGS domain. GRKs in Metazoa fall into two clades, one including GRK2 and GRK3, and the other consisting of all remaining GRKs, split into GRK1-GRK7 lineage and GRK4-GRK5-GRK6 lineage in vertebrates. One representative of each of the two ancient clades is found as early as placozoan Trichoplax adhaerens. Several protists, two oomycetes and unicellular brown algae have one GRK-like protein, suggesting that the insertion of a kinase domain into the RGS domain preceded the origin of Metazoa. The two GRK families acquired distinct structural units in the N- and C-termini responsible for membrane recruitment and receptor association. Thus, GRKs apparently emerged before animals and rapidly expanded in true Metazoa, most likely due to the need for rapid signalling adjustments in fast-moving animals.  相似文献   

15.
G protein-coupled receptor kinases (GRKs) are important regulators of G protein-coupled receptor function and mediate receptor desensitization, internalization, and signaling. While GRKs also interact with and/or phosphorylate many other proteins and modify their function, relatively little is known about the cellular localization of endogenous GRKs. Here we report that GRK5 co-localizes with γ-tubulin, centrin, and pericentrin in centrosomes. The centrosomal localization of GRK5 is observed predominantly at interphase and although its localization is not dependent on microtubules, it can mediate microtubule nucleation of centrosomes. Knockdown of GRK5 expression leads to G2/M arrest, characterized by a prolonged G2 phase, which can be rescued by expression of wild type but not catalytically inactive GRK5. This G2/M arrest appears to be due to increased expression of p53, reduced activity of aurora A kinase and a subsequent delay in the activation of polo-like kinase 1. Overall, these studies demonstrate that GRK5 is localized in the centrosome and regulates microtubule nucleation and normal cell cycle progression.  相似文献   

16.
Studies of the desensitization of G protein-coupled signal transduction have led to the discovery of a family of guanosine triphosphatase-activating proteins (GAPs) for heterotrimeric G protein alpha subunits — the “regulator of G protein signaling” or RGS proteins. In considering both documented and potential functions of several RGS protein family members with demonstrable multidomain compositions (p115RhoGEF, PDZRhoGEF, Axin, Axil/Conductin, D-AKAP2, the G protein-coupled receptor kinases [GRKs], the DEP/GGL/RGS subfamily [RGS6, RGS7, RGS9, RGS11], and RGS12), this review explores the shift in our appreciation of the RGS proteins from unidimensional desensitizing agents to multifocal signal transduction regulators.  相似文献   

17.
Whither goest the RGS proteins?   总被引:3,自引:0,他引:3  
Studies of the desensitization of G protein-coupled signal transduction have led to the discovery of a family of guanosine triphosphatase-activating proteins (GAPs) for heterotrimeric G protein alpha subunits - the "regulator of G protein signaling" or RGS proteins. In considering both documented and potential functions of several RGS protein family members with demonstrable multidomain compositions (p115RhoGEF, PDZRhoGEF, Axin, Axil/Conductin, D-AKAP2, the G protein-coupled receptor kinases [GRKs], the DEP/GGL/RGS subfamily [RGS6, RGS7, RGS9, RGS11], and RGS12), this review explores the shift in our appreciation of the RGS proteins from unidimensional desensitizing agents to multifocal signal transduction regulators.  相似文献   

18.
G蛋白偶联受体激酶(GRK)是G蛋白偶联受体(GPCR)信号通路的负性调节因子。近来的研究发现,GRK除了磷酸化G蛋白偶联受体使其脱敏外,还能与其他非受体底物结合,功能呈现多样性。GRK5是GRK家族成员之一,该研究探索了GRK5在细胞周期和有丝分裂中的作用,结果显示:在细胞内干扰GRK5的表达导致分裂中期的细胞数目增多和细胞凋亡。进一步的研究发现,干扰GRK5的表达导致有丝分裂中期的染色体不能正常排列到赤道板,而对分裂后期染色质分离以及胞质分裂没有影响。在细胞内干扰GRK蛋白家族的另一个成员GRK2对有丝分裂则没有明显影响。该研究提示GRK5是细胞有丝分裂的重要调控蛋白。  相似文献   

19.
Extracellular calcium rapidly controls PTH secretion through binding to the G protein-coupled calcium-sensing receptor (CASR) expressed in parathyroid glands. Very little is known about the regulatory proteins involved in desensitization of CASR. G protein receptor kinases (GRK) and beta-arrestins are important regulators of agonist-dependent desensitization of G protein-coupled receptors. In the present study, we investigated their role in mediating agonist-dependent desensitization of CASR. In heterologous cell culture models, we found that the transfection of GRK4 inhibits CASR signaling by enhancing receptor phosphorylation and beta-arrestin translocation to the CASR. In contrast, we found that overexpression of GRK2 desensitizes CASR by classical mechanisms as well as through phosphorylation-independent mechanisms involving disruption of Galphaq signaling. In addition, we observed lower circulating PTH levels and an attenuated increase in serum PTH after hypocalcemic stimulation in beta-arrestin2 null mice, suggesting a functional role of beta-arrestin2-dependent desensitization pathways in regulating CASR function in vivo. We conclude that GRKs and beta-arrestins play key roles in regulating CASR responsiveness in parathyroid glands.  相似文献   

20.
The substance P receptor (SPR) is a G protein-coupled receptor (GPCR) that plays a key role in pain regulation. The SPR desensitizes in the continued presence of agonist, presumably via mechanisms that implicate G protein-coupled receptor kinases (GRKs) and beta-arrestins. The temporal relationship of these proposed biochemical events has never been established for any GPCR other than rhodopsin beyond the resolution provided by biochemical assays. We investigate the real-time activation and desensitization of the human SPR in live HEK293 cells using green fluorescent protein conjugates of protein kinase C, GRK2, and beta-arrestin 2. The translocation of protein kinase C betaII-green fluorescent protein to and from the plasma membrane in response to substance P indicates that the human SPR becomes activated within seconds of agonist exposure, and the response desensitizes within 30 s. This desensitization process coincides with a redistribution of GRK2 from the cytosol to the plasma membrane, followed by a robust redistribution of beta-arrestin 2 and a profound change in cell morphology that occurs after 1 min of SPR stimulation. These data establish a role for GRKs and beta-arrestins in homologous desensitization of the SPR and provide the first visual and temporal resolution of the sequence of events underlying homologous desensitization of a GPCR in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号