首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tang J 《Current Genomics》2011,12(6):391-403
Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their "omics" platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology.  相似文献   

3.
Here we explain the omics approach of metabolomics and how it can be applied to study a physiological response to toxic metal exposure. This review aims to educate the metallomics field to the tool of metabolomics. Metabolomics is becoming an increasingly used tool to compare natural and challenged states of various organisms, from disease states in humans to toxin exposure to environmental systems. This approach is key to understanding and identifying the cellular or biochemical targets of metals and the underlying physiological response. Metabolomics steps are described and overviews of its application to metal toxicity to organisms are given. As this approach is very new there are yet only a small number of total studies and therefore only a brief overview of some metal metabolomics studies is described. A frank critical evaluation of the approach is given to provide newcomers to the method a clear idea of the challenges and the rewards of applying metabolomics to their research.  相似文献   

4.
微生物代谢组学是系统生物学的重要组成部分,其与基因组学、转录组学和蛋白质组学相互补充,近年来受到越来越多人的重视。其主要对细胞生长或生长周期某一时刻细胞内外所有低分子量代谢物进行定性和定量分析,直接反映了细胞的生理状态,对理解细胞功能十分重要。由于代谢物的复杂性,研究者需根据不同的目的及对象选择合适的分析方法。对微生物代谢组学近年来的研究方法进行综述,包括样品处理、分析手段、数据分析,并讨论了微生物代谢组学在工业中的应用及所面临的挑战。  相似文献   

5.
6.
Mass spectrometry(MS)-based omics technologies are now widely used to profile small molecules in multiple matrices to confer comprehensive snapshots of cellular metabolic phenotypes.The metabolomes of cells,tissues,and organisms comprise a variety of molecules including lipids,amino acids,sugars,organic acids,and so on.Metabolomics mainly focus on the hydrophilic classes,while lipidomics has emerged as an independent omics owing to the complexities of the organismal lipidomes.The potential roles of lipids and small metabolites in disease pathogenesis have been widely investigated in various human diseases,but system-level understanding is largely lacking,which could be partly attributed to the insufficiency in terms of metabolite coverage and quantitation accuracy in current analytical technologies.While scientists are continuously striving to develop high-coverage omics approaches,integration of metabolomics and lipidomics is becoming an emerging approach to mechanistic investigation.Integration of metabolome and lipidome offers a complete atlas of the metabolic landscape,enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology,facilitating the study of interconnection between lipids and other metabolites in disease progression.In this review,we summarize omics-based findings on the roles of lipids and metabolites in the pathogenesis of selected major diseases threatening public health.We also discuss the advantages of integrating lipidomics and metabolomics for in-depth understanding of molecular mechanism in disease pathogenesis.  相似文献   

7.
The computational metabolomics field brings together computer scientists, bioinformaticians, chemists, clinicians, and biologists to maximize the impact of metabolomics across a wide array of scientific and medical disciplines. The field continues to expand as modern instrumentation produces datasets with increasing complexity, resolution, and sensitivity. These datasets must be processed, annotated, modeled, and interpreted to enable biological insight. Techniques for visualization, integration (within or between omics), and interpretation of metabolomics data have evolved along with innovation in the databases and knowledge resources required to aid understanding. In this review, we highlight recent advances in the field and reflect on opportunities and innovations in response to the most pressing challenges. This review was compiled from discussions from the 2022 Dagstuhl seminar entitled “Computational Metabolomics: From Spectra to Knowledge”.  相似文献   

8.
Hyperpolarized NMR is a promising approach to address the sensitivity limits of conventional NMR metabolomics approaches, which currently fails to detect minute metabolite concentrations in biological samples. This review describes how tremendous signal enhancement offered by dissolution-dynamic nuclear polarization and parahydrogen-based techniques can be fully exploited for molecular omics sciences. Recent developments, including the combination of hyperpolarization techniques with fast multi-dimensional NMR implementation and quantitative workflows are described, and a comprehensive comparison of existing hyperpolarization techniques is proposed. High-throughput, sensitivity, resolution and other relevant challenges that should be tackled for a general application of hyperpolarized NMR in metabolomics are discussed.  相似文献   

9.
组学研究是生命科学研究的重要组成部分,是从整体角度研究全部组分及其相互关系的学科。组学数据库收集整理了与组学研究相关的所有信息,为组学研究提供了全面的数据基础。其中,作物组学数据库主要是以作物为对象建立的组学数据库,尤其是几大主要粮食作物的组学测序及信息挖掘,提升了作物科学的基础研发和生产水平,使我国粮食储备迈上一个新的台阶。本文以水稻、玉米和小麦为代表,通过搜集它们在组学研究中常用的数据库,概述了作物基因组学、转录组学、蛋白质组学、代谢组学及表型组学的主要研究内容,阐述了作物组学数据库在作物科学研究中的发展现状,揭示了在高通量信息时代下多种组学数据库的交叉及综合利用已经成为作物科学研究发展的重要方向和手段。  相似文献   

10.
11.
Introduction: Red blood cells (RBC) are the most abundant host cells in the human body. Mature erythrocytes are devoid of nuclei and organelles and have always been regarded as circulating ‘bags of hemoglobin’. The advent of proteomics has challenged this assumption, revealing unanticipated complexity and novel roles for RBCs not just in gas transport, but also in systemic metabolic homeostasis in health and disease.

Areas covered: In this review we will summarize the main advancements in the field of discovery mode and redox/quantitative proteomics with respect to RBC biology. We thus focus on translational/clinical applications, such as transfusion medicine, hematology (e.g. hemoglobinopathies) and personalized medicine. Synergy of omics technologies – especially proteomics and metabolomics – are highlighted as a hallmark of clinical metabolomics applications for the foreseeable future.

Expert commentary: The introduction of advanced proteomics technologies, especially quantitative and redox proteomics, and the integration of proteomics data with omics information gathered through orthogonal technologies (especially metabolomics) promise to revolutionize many biomedical areas, from hematology and transfusion medicine to personalized medicine and clinical biochemistry.  相似文献   


12.
Bob Challen  Rainer Cramer 《Proteomics》2022,22(15-16):2100394
Omics analysis by mass spectrometry (MS) is a vast field, with proteomics, metabolomics and lipidomics dominating recent research by exploiting biological MS ionisation techniques. Traditional MS ionisation techniques such as electrospray ionisation have limitations in analyte-specific sensitivity, modes of sampling and throughput, leading to many researchers investigating new ionisation methods for omics research. In this review, we examine the current landscape of these new ionisation techniques, divided into the three groups of (electro)spray-based, laser-based and other miscellaneous ionisation techniques. Due to the wide range of new developments, this review can only provide a starting point for further reading on each ionisation technique, as each have unique benefits, often for specialised applications, which promise beneficial results for different areas in the omics world.  相似文献   

13.
In the post-genomics era, metabolomics represents a new "omics" approach that in the last decade has received increased attention in the field of oncology. Metabolomics is based on the holistic study of the metabolic profile that characterizes a specific phenotype in a biological system. The metabolic profile provides a readout of the metabolic state of an individual that cannot be obtained directly from DNA genotyping, gene expression, or proteomic profiling analyses. The translational value of metabonomics in the oncology field has been demonstrated by the identification of diagnostic and prognostic biomarkers. The so-called pharmaco-metabolomic approach that is currently emerging aims to identify the individual metabolomic characteristics able to predict drug effectiveness and/or toxicity. This review presents the potential role of pharmaco-metabolomics in the future of anticancer pharmacology to achieve customized anticancer treatments and new, targeted therapeutic approaches.  相似文献   

14.
15.
16.
Exciting funding initiatives are emerging in Europe and the US for metabolomics data production, storage, dissemination and analysis. This is based on a rich ecosystem of resources around the world, which has been build during the past ten years, including but not limited to resources such as MassBank in Japan and the Human Metabolome Database in Canada. Now, the European Bioinformatics Institute has launched MetaboLights, a database for metabolomics experiments and the associated metadata (http://www.ebi.ac.uk/metabolights). It is the first comprehensive, cross-species, cross-platform metabolomics database maintained by one of the major open access data providers in molecular biology. In October, the European COSMOS consortium will start its work on Metabolomics data standardization, publication and dissemination workflows. The NIH in the US is establishing 6?C8 metabolomics services cores as well as a national metabolomics repository. This communication reports about MetaboLights as a new resource for Metabolomics research, summarises the related developments and outlines how they may consolidate the knowledge management in this third large omics field next to proteomics and genomics.  相似文献   

17.
18.
Introduction: The exposure to tobacco smoke during pregnancy is one of the leading causes of perinatal adverse outcomes such as stillbirth, intrauterine growth restriction (IUGR), and low birth weight, but the underlying biological mechanisms are still unclear. The incidence of this phenomenon maybe largely underestimated since the evaluation is made mainly by self-assessment questionnaires rather than measuring nicotine metabolites (such as cotinine) in biological fluids. In this context metabolomics may be useful to assess the actual number of pregnant women and to highlight the pathophysiological mechanisms that lead to the abovementioned adverse outcomes.

Areas covered: The aims of this review are to analyze the literature and the application of the omics sciences, such as genomics and metabolomics concerning the negative effects of smoking during pregnancy in order to give a comprehensive picture of all the study made so far and to point out the potential of metabolomics as an investigative, predictive, and diagnostic tool.

Expert commentary: Metabolomics in recent years has proved an excellent tool to try to understand the problems in perinatal medicine. With the increase in the number of studies we are convinced that it can be a useful instrument of investigation in this field.  相似文献   


19.
Gene‐editing techniques are currently revolutionizing biology, allowing far greater precision than previous mutagenic and transgenic approaches. They are becoming applicable to a wide range of plant species and biological processes. Gene editing can rapidly improve a range of crop traits, including disease resistance, abiotic stress tolerance, yield, nutritional quality and additional consumer traits. Unlike transgenic approaches, however, it is not facile to forensically detect gene‐editing events at the molecular level, as no foreign DNA exists in the elite line. These limitations in molecular detection approaches are likely to focus more attention on the products generated from the technology than on the process in itself. Rapid advances in sequencing and genome assembly increasingly facilitate genome sequencing as a means of characterizing new varieties generated by gene‐editing techniques. Nevertheless, subtle edits such as single base changes or small deletions may be difficult to distinguish from normal variation within a genotype. Given these emerging scenarios, downstream ‘omics’ technologies reflective of edited affects, such as metabolomics, need to be used in a more prominent manner to fully assess compositional changes in novel foodstuffs. To achieve this goal, metabolomics or ‘non‐targeted metabolite analysis’ needs to make significant advances to deliver greater representation across the metabolome. With the emergence of new edited crop varieties, we advocate: (i) concerted efforts in the advancement of ‘omics’ technologies, such as metabolomics, and (ii) an effort to redress the use of the technology in the regulatory assessment for metabolically engineered biotech crops.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号