首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: The purpose of this study was to evaluate the antimicrobial efficacy of thirteen bismuth thiol preparations for bactericidal activity against established biofilms formed by two bacteria isolated from human chronic wounds. Methods: Single species biofilms of a Pseudomonas aeruginosa or a methicillin‐resistant Staphylococcus aureus were grown in either colony biofilm or drip‐flow reactors systems. Biofilms were challenged with bismuth thiols, antibiotics or silver sulfadiazine, and log reductions were determined by plating for colony formation. Conclusions: Antibiotics were ineffective or inconsistent against biofilms of both bacterial species tested. None of the antibiotics tested were able to achieve >2 log reductions in both biofilm models. The 13 different bismuth thiols tested in this investigation achieved widely varying degrees of killing, even against the same micro‐organism in the same biofilm model. For each micro‐organism, the best bismuth thiol easily outperformed the best conventional antibiotic. Against P. aeruginosa biofilms, bismuth‐2,3‐dimercaptopropanol (BisBAL) at 40–80 μg ml?1 achieved >7·7 mean log reduction for the two biofilm models. Against MRSA biofilms, bismuth‐1,3‐propanedithiol/bismuth‐2‐mercaptopyridine N‐oxide (BisBDT/PYR) achieved a 4·9 log reduction. Significance and Impact of the Study: Bismuth thiols are effective antimicrobial agents against biofilms formed by wound bacteria and merit further development as topical antiseptics for the suppression of biofilms in chronic wounds.  相似文献   

2.
Aims: To develop an in vitro model (Colony/drip‐flow reactor – C/DFR) for the growth and analysis of methicillin‐resistant Staphylococcus aureus (MRSA) biofilms. Methods and Results: Using the C/DFR model, biofilms were grown on the top of polycarbonate filter membranes inoculated with a clinical isolate of MRSA, placed on absorbent pads in the DFR and harvested after 72 h. The biofilms varied from 256 to 308 μm in thickness with a repeatability standard deviation of 0·22. Testing of antimicrobial agents was also performed where C/DFR biofilms were grown in parallel with conventional colony biofilms. A saline solution (control), 1% silver sulfadiazine solution, and 0·25% Dakin’s solution were used to treat the biofilms for 15 min. Microscopic evaluation of biofilm morphology and thickness was conducted. The Dakins solution in both models produced statistically significantly higher log reductions than silver sulfadiazine treatment. Conclusions: The C/DFR biofilms were thick and repeatable and exhibited higher resistance to Dakins solution than the treated colony biofilms. Significance and Impact of the Study: The C/DFR can be used as a tool for examining complex biofilm physiology as well as for performing comparative experiments that test wound care products and novel antimicrobials.  相似文献   

3.
Aims: Proton motive force (PMF) inhibition enhances the intracellular accumulation of autoinducers possibly interfering with biofilm formation. We evaluated the effect of the PMF inhibitor carbonyl cyanide‐m‐chlorophenylhydrazone (CCCP) on Pseudomonas aeruginosa biofilm development. Methods and Results: Four epidemiologically unrelated P. aeruginosa isolates were studied. A MexAB‐oprM overproducing strain was used as control. Expression of gene mexB was examined and biofilm formation after incubation with 0, 12·5 and 25 μmol l?1 of CCCP was investigated. Mean values of optical density were analysed with one‐way analysis of variance and t‐test. Two isolates subexpressed mexB gene and only 25 μmol l?1 of CCCP affected biofilm formation. Biofilms of the other two isolates and control strain PA140 exhibited significantly lower absorbance (P ranging from <0·01 to <0·05) with either 12·5 or 25 μmol l?1 of CCCP. Conclusions: The PMF inhibitor CCCP effect was correlated with the expression of MexAB‐OprM efflux system and found to compromise biofilm formation in P. aeruginosa. Significance and Impact of the Study: These data suggest that inhibition of PMF‐dependent trasporters might decrease biofilm formation in P. aeruginosa.  相似文献   

4.
Aims: To select and evaluate an appropriate outer membrane (OM) permeabilizer to use in combination with the highly muralytic bacteriophage endolysin EL188 to inactivate (multi‐resistant) Pseudomonas aeruginosa. Methods and Results: We tested the combination of endolysin EL188 and several OM permeabilizing compounds on three selected Ps. aeruginosa strains with varying antibiotic resistance. We analysed OM permeabilization using the hydrophobic probe N‐phenylnaphtylamine and a recombinant fusion protein of a peptidoglycan binding domain and green fluorescent protein on the one hand and cell lysis assays on the other hand. Antibacterial assays showed that incubation of 106Ps. aeruginosa cells ml?1 in presence of 10 mmol l?1 ethylene diamine tetraacetic acid disodium salt dihydrate (EDTA) and 50 μg ml?1 endolysin EL188 led to a strain‐dependent inactivation between 3·01 ± 0·17 and 4·27 ± 0·11 log units in 30 min. Increasing the EL188 concentration to 250 μg ml?1 further increased the inactivation of the most antibiotic resistant strain Br667 (4·07 ± 0·09 log units). Conclusions: Ethylene diamine tetraacetic acid disodium salt dihydrate was selected as the most suitable component to combine with EL188 in order to reduce Ps. aeruginosa with up to 4 log units in a time interval of 30 min. Significance and Impact of the Study: This in vitro study demonstrates that the application range of bacteriophage encoded endolysins as ‘enzybiotics’ must not be limited to gram‐positive pathogens.  相似文献   

5.
In Greenland, free‐living red coralline algae contribute to and dominate marine habitats along the coastline. Lithothamnion glaciale dominates coralline algae beds in many regions of the Arctic, but never in Godthåbsfjord, Greenland, where Clathromorphum sp. is dominant. To investigate environmental impacts on coralline algae distribution, calcification and primary productivity were measured in situ during summers of 2015 and 2016, and annual patterns of productivity in L. glaciale were monitored in laboratory‐based mesocosm experiments where temperature and salinity were manipulated to mimic high glacial melt. The results of field and cold‐room measurements indicate that both L. glaciale and Clathromorphum sp. had low calcification and photosynthetic rates during the Greenland summer (2015 and 2016), with maximum of 1.225 ± 0.17 or 0.002 ± 0.023 μmol CaCO 3 · g?1 · h?1 and ?0.007 ±0.003 or ?0.004 ± 0.001 mg O2 · L?1 · h?1 in each species respectively. Mesocosm experiments indicate L. glaciale is a seasonal responder; photosynthetic and calcification rates increase with annual light cycles. Furthermore, metabolic processes in L. glaciale were negatively influenced by low salinity; positive growth rates only occurred in marine treatments where individuals accumulated an average of 1.85 ± 1.73 mg · d?1 of biomass through summer. These results indicate high freshwater input to the Godthåbsfjord region may drive the low abundance of L glaciale , and could decrease species distribution as climate change increases freshwater input to the Arctic marine system via enhanced ice sheet runoff and glacier calving.  相似文献   

6.
Aim: To determine if exposure of Pseudomonas aeruginosa biofilms to chloraminated drinking water can lead to individual bacteria with resistance to antibiotics. Methods and Results: Biofilms of P. aeruginosa PA14 were grown in drinking water in a Kadouri drip‐fed reactor; the biofilms were treated with either 0·5 mg l‐1 or 1·0 mg l‐1 of chloramine for 15 or 21 days; control biofilms were grown in water without chloramine. Fewer isolates with antibiotic resistance were obtained from the chloramine‐treated biofilms as compared to the control. Minimum inhibitory concentrations (MIC) for selected antibiotic‐resistant isolates were determined using ciprofloxacin, tobramycin, gentamicin, rifampicin and chloramphenicol. All of the isolates tested had increased resistance over the wildtype to ciprofloxacin, rifampicin and chloramphenicol, but were not resistant to tobramycin or gentamicin. Conclusions: Under these test conditions, there was no detectable increase in antibiotic resistance in P. aeruginosa exposed as biofilms to disinfectant residues in chloraminated drinking water. Significance and Impact of the study: Chloramine in drinking water, while unable to kill biofilm bacteria, does not increase the potential of P. aeruginosa to become resistant to antibiotics.  相似文献   

7.
Aims: Biocontrol is an emerging trend aimed at reducing chemical input while increasing plant fitness, productivity and resistance to diseases in sustainable agriculture. An antagonist, pY11T‐3‐1, was herein characterized for potential applications against soil‐borne plant diseases. Methods and Results: In vitro antagonistic assays, the antagonist pY11T‐3‐1 was demonstrated able to obviously reduce the occurrence of the soft rot disease on Pinellia ternata, potato, pepper, tomato, cucumber and eggplant tubers or fruits, with higher prevention (90%) on P. ternata. It showed a broad antagonistic spectrum against 23 tested bacterial and fungal phytopathogens, which were distributed in 14 genus and 17 species. However, it inhibited only two of the seven bacterial nonpathogens. Phenotypic characterizations showed that the antagonist pY11T‐3‐1 was similar to Pseudomonas aeruginosa. Its major fatty acids were 18:1 w7c (22·17%), 16:0 (20·21%), 12:0 2OH (12·45%), 16:1w7c/15 iso2OH (10·95%) and 10:0 3OH (10·79%), which is a different profile from that of Ps. aeruginosa. The 16S rRNA and gyr B gene sequences shared 100 and 99% similarity with Ps. aeruginosa, respectively. The phylogenetic trees showed that it was clustered with Ps. aeruginosa. Conclusions: The antagonist pY11T‐3‐1 was characterized as Ps. aeruginosa with a unique fatty acid profile. Significance and Impact of the Study: With broad antagonistic spectrum and host selectivity, the antagonist pY11T‐3‐1 may provide a more environmental and economical alternative to the control of soil‐borne disease on P. ternata, which needs further investigation.  相似文献   

8.
Toxin analysis of 15 species of Kareniaceae revealed the presence of karlotoxin, KmTx 2, in only a single species (Karlodinium veneficum) but with variable activity in strains from the Swan (KmSwanTx 2‐1, 2.1 pg · cell?1; and KmSwanTx 2‐2, 0.53 pg · cell?1), Huon (KmHuonTx 2, 0.86 pg · cell?1), and Derwent rivers (<0.001 pg · cell?1) in Australia. A newly isolated Southern Ocean species, Karlodinium conicum, contained a novel poorly hemolytic karlotoxin analogue (KmconicumTx, 2.8 pg · cell?1). The hemolytic potency (HD50%) of the Australian karlotoxins were as follows: KmSwanTx 2‐1 (65.9 ± 4.8 ng) and KmSwanTx 2‐2 (63.4 ± 3.7 ng), KmHuonTx 2 (343 ± 4.9 ng), and KmconicumTx (>4,000 ng). Species from the closely related genera Takayama (T. helix, T. tasmanica, T. tuberculata), Karenia (K. asterichroma, K. brevis, K. mikimotoi, K. papilionacea, K. umbella), and Karlodinium (Ka. australe, Ka. antarcticum, Ka. ballantinum, Ka. corrugatum, Ka. decipiens) were all consistently negative for karlotoxin production. Brevetoxin (PbTx) was only detected in K. brevis, and hemolytic activity was only observed in Ka. veneficum strains.  相似文献   

9.
Aims: The goal of this study was to determine inhibitory effect of palm kernel expeller (PKE) peptides of different degree of hydrolysis (DH %) against spore‐forming bacteria Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophillus, Bacillus subtilis, Bacillus thuringiensis, Clostridium perfringens; and non‐spore‐forming bacteria Escherichia coli, Lisinibacillus sphaericus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium and Staphylococcus aureus. Methods and Results: A range of DH % (50–100) of PKE peptides was prepared using alcalase, and hydrolysis conditions were determined using response surface methodology (RSM). The influence of pH (6·5–10·5), temperature (35–65°C), enzyme/substrate ratio (1–5%) and substrate concentration (1–2%) were studied on the response of the DH. The antibacterial activity of different DH % of PKE peptides was tested by using disc diffusion assay and micro‐broth dilution assay. According to the minimum inhibitory concentration (MIC) test on each of the PKE peptides of different DH %, the 70 DH % PKE peptide showed greater inhibitory effect compared to the 100 DH % PKE peptide against B. cereus, B. coagulans, B. megaterium, B. pumilus, B. stearothermophillus, B. subtilis, B. thuringiensis, Cl. perfringens, Lisinibacillus sphaericus and L. monocytogenes. Conclusions: The 70 DH % PKE peptides exhibited greatest overall antibacterial effect of the various peptides of PKE evaluated. Further research is needed to determine the mode of action of PKE peptides. Significance and Impact of the Study: Palm kernel expeller peptides, a natural plant product, effectively inhibited the growth of spore‐forming and non‐spore‐forming Gram‐positive bacteria. Potentially, PKE peptides could be used in food preservation and developed as antibacterial agent in the pharmaceutical industry.  相似文献   

10.
In this study, we highlight the effects of methyl jasmonate (MeJa) on cystocarp development in the red macroscopic alga Grateloupia imbricata. In G. imbricata, jasmonate release is related to the reproductive state, as fertile thalli (i.e., those that have cystocarps) released significant amounts of this volatile compound (1.27 ± 0.20 mM · mg fw?1 · h?1) compared with infertile thalli (0.95 ± 0.12 mM · mg fw?1 · h?1). Treating G. imbricata thalli with MeJa revealed a significant increase in cystocarp number (1.5 ± 0.27 cystocarps · mm?2), which was ~7.5‐fold greater than in untreated thalli (0.2 ± 0.07 cystocarps · mm?2). Maturation was completed within 48 h with MeJa treatment, a shortening of the typical >3‐week maturation period, and included the opening of cystocarps and the presence of dehiscent cavities. Release rates of jasmonates after exogenous MeJa treatment were also modified based on the cystocarp maturation level. All of these effects were reduced in the presence of phenidone, which blocks MeJa production, indicating that the MeJa action is genuine. The effects of MeJa during cystocarp maturation were not replicated by derivatives of reactive oxygen species from the same jasmonic acid biosynthetic pathway, as the activities of scavenger enzymes and lipid peroxidation were unchanged between infertile and fertile thalli. Therefore, a reactive oxygen species–based mechanism is not involved during cystocarp development. We conclude that MeJa has an independent function as a growth regulator during G. imbricata reproduction.  相似文献   

11.
Aims: In traditional Thai medicine, nutgall of Quercus infectoria G. Olivier is well‐documented as an effective agent for wound and skin infections. The present study was aimed to establish modes of action of the ethanol extract of the plant as well as its main constituents to induce anti‐methicillin‐resistant Staphylococcus aureus (MRSA) activity. Methods and Results: The minimal inhibitory concentration (MIC)/minimal bactericidal concentration (MBC) values of ethyl acetate I, ethyl acetate II, 95% ethanol and 30% ethanol fractions against MRSA were 0·06/0·25, 0·13/0·25, 0·25/0·5 and 0·5/1·00 mg ml?1, respectively. Ellagic acid, gallic acid, syringic acid and tannic acid as major components of Q. infectoria nutgall extract were included in this study. Among these, gallic acid and tannic acid demonstrated good MIC/MBC values at 0·06/0·06 and 0·13/0·25 mg ml?1, respectively. A lysis experiment demonstrated that the ethanol extract, ethyl acetate fraction I and all of the main components failed to lyse MRSA cells. In contrast, both MRSA and Staph. aureus ATCC 25923 treated with the ethanol extract, ethyl acetate fraction I, gallic acid and tannic acid displayed significant loss of tolerance to low osmotic pressure and high salt concentration. Conclusions: The results documented the effect of different fractions of Q. infectoria and purified compounds on MRSA and Staph. aureus. In addition, the study demonstrated that treatment with Q. infectoria extract and the purified compounds results in hypersensitivity to low and high osmotic pressure. Significance and Impact of the Study: This study provides scientific information to support the traditional uses of the nutgall extract and suggesting its anti‐MRSA mechanisms.  相似文献   

12.
Simocephalus vetulus is a large (2.0–4.0 mm at maturity) cladoceran often found in the littoral region of lakes and ponds, and capable of moderate growth rates even on poor‐quality cyanobacterial diets. It frequently co‐occurs with fishes and similar sized ostracods such as Heterocypris incongruens, but little is known of its response to fish kairomones or its interactions with potential competitors. We studied the demographic responses of S. vetulus fed the green alga Scenedesmus acutus, Microcystis cf. aeruginosa strain A, Microcystis cf. aeruginosa strain B, or Limnothrix sp. Experiments were conducted separately and together in the presence of Heterocypris incongruens and cichlid fish (Oreochromis) kairomones. A diet of Limnothrix sp. resulted in the lowest population growth rate (0.21±0.023 d?1), while on diets of S. acutus or Microcystis, population growth was higher (0.30±0.009 d?1). The presence of ostracods resulted in significantly higher growth rates of S. vetulus fed Limnothrix (0.33±0.01 d?1), but not Microcystis or S. acutus. Regardless of the diet, the presence of fish kairomones resulted in significantly higher growth rates as compared with controls, particularly when ostracods were also present. Coexistence with ostracods may be beneficial to S. vetulus, particularly when food quality is poor.  相似文献   

13.
The age and growth of migrating tropical eels, Anguilla celebesensis and Anguilla marmorata from central Sulawesi, Indonesia, were examined. Migrating eels (63 A. celebesensis and 38 A. marmorata ) were obtained from weirs near the Poso Lake outlet and non‐migrating eels (35 A. celebesensis and 119 A. marmorata ) were captured by baited hooks, eel pots, scoop net and electro‐fishing in the Poso River system, Laa River system, Baluga River, Tongku River and Padapu River from February 2009 to October 2010. In both species, the proportion of eels with opaque otolith edges showed a single peak in July, suggesting that one annulus (a pair of translucent and opaque zones) was formed each year in their otoliths. Mean ± s.d . and range of total length (L T) and age was 785·2 ± 114·9 (585–1083) mm and 7·5 ± 1·6 (5–11) years in migrating female A. celebesensis and 1132·2 ± 173·7 (800–1630) mm and 11·6 ± 3·3 (7–23) years in A. marmorata . The age of migrating female eels was negatively correlated with annual growth rate, 100·7 ± 17·2 (68·1–145·0) mm year?1 in A. celebesensis and 97·9 ± 19·3 (66·6–131·6) mm year?1 in A. marmorata , but there was no significant correlation between the L T and annual growth rate in either species. The annual growth rates of these female tropical eels were typically higher than those of temperate anguillid species, suggesting a latitudinal cline in growth rate in the genus Anguilla reflecting the environmental conditions of their growth habitat.  相似文献   

14.
Bacterial biofilms are a growing concern in a broad range of areas. In this study, a mixture of RNA bacteriophages isolated from municipal wastewater was used to control and remove biofilms. At the concentrations of 400 and 4 × 107 PFU/mL, the phages inhibited Pseudomonas aeruginosa biofilm formation by 45 ± 15% and 73 ± 8%, respectively. At the concentrations of 6,000 and 6 × 107 PFU/mL, the phages removed 45 ± 9% and 75 ± 5% of pre‐existing P. aeruginosa biofilms, respectively. Chlorine reduced biofilm growth by 86 ± 3% at the concentration of 210 mg/L, but it did not remove pre‐existing biofilms. However, a combination of phages (3 × 107 PFU/mL) and chlorine at this concentration reduced biofilm growth by 94 ± 2% and removed 88 ± 6% of existing biofilms. In a continuous flow system with continued biofilm growth, a combination of phages (a one‐time treatment at the concentration of 1.9 × 108 PFU/mL for 1 h first) with chlorine removed 97 ± 1% of biofilms after Day 5 while phage and chlorine treatment alone removed 89 ± 1% and 40 ± 5%, respectively. For existing biofilms, a combined use of a lower phage concentration (3.8 × 105 PFU/mL) and chlorination with a shorter time duration (12 h) followed by continuous water flushing removed 96 ± 1% of biofilms in less than 2 days. Laser scanning confocal microscopy supplemented with electron microscopy indicated that the combination treatment resulted in biofilms with lowest cell density and viability. These results suggest that the combination treatment of phages and chlorine is a promising method to control and remove bacterial biofilms from various surfaces. Biotechnol. Bioeng. 2013; 110: 286–295. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Aims: To examine effects of various environmental factors on adsorption and inactivation of Pseudomonas aeruginosa‐specific phages: δ (family Podoviridae), J‐1, σ‐1 and 001A (family Siphoviridae) and their ability to inhibit bacterial growth and biofilm formation. Methods and Results: The phages examined in the study were clonally different, as revealed by RFLP. The temperature in the range 7–44°C had no influence on the adsorption of Podoviridae, but did affect Siphoviridae adsorption, particularly 001A. All phages were significantly stable at pH 5–9, and phages δ and 001A even at pH 3. Most of the examined carbohydrates and exopolysaccharides of the original host efficiently inactivated phage δ, while phages σ‐1 and J‐1 were inactivated considerably only by the amino acid alanine. Silver nitrate efficiently inactivated all the phages, while Siphoviridae were more resistant to povidone‐iodine. Serum of nonimmunized rats had no influence on phage inactivation and adsorption. Only phage δ showed ability to effectively inhibit in vitro bacterial growth and biofilm formation. Conclusions: The examined environmental parameters can significantly influence the adsorption and viability of Ps. aeruginosa‐specific phages. The phage δ is a good candidate for biocontrol of Ps. aeruginosa. Significance and Impact of the Study: The study provides important data on Ps. aeruginosa‐specific phage adsorption, inactivation and in vitro lytic efficacy.  相似文献   

16.
Aims: To investigate the antimicrobial efficacy of an alkaloid, harmaline alone and in combination with chlorhexidine digluconate (CHG) against clinical isolates of Staphylococcus aureus (Saureus) grown in planktonic and biofilm cultures. Methods: Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined for each micro‐organism grown in suspension and in biofilm using microbroth dilution method. Chequerboard assays were used to determine synergistic, indifferent or antagonistic interactions between harmaline and CHG, and the some of results were verified by confocal laser scanning microscopy. Results: Harmaline and CHG showed effective antimicrobial activity against suspensions and biofilm cultures of Saureus, respectively. As determined by fractional inhibitory concentration index (FICI), synergistic antimicrobial effects between harmaline and CHG were observed in nine and 11 of the 13 S. aureus strains when in suspension and in biofilm, respectively. FICI values were from 0·375 to 1·25 when in suspension and from 0·25 to 1·25 when in biofilm. Conclusions: Synergistic activity of harmaline and CHG against clinical isolates of S. aureus (in suspension and in biofilm) was observed in vitro. Significance and Impact of the Study: This study might provide alternative methods to overcome the problem of drug‐resistance of S. aureus both in suspension and in biofilm.  相似文献   

17.
The growth, photosynthetic characteristics, and competitive ability of three algal strains were investigated under different doses of ultraviolet‐B (UVB) radiation (0, 0.285, and 0.372 W · m?2). The organisms were the toxic bloom‐forming cyanobacterium Microcystis aeruginosa FACHB 912, nontoxic M. aeruginosa FACHB 469, and the green microalga Chlamydomonas microsphaera FACHB 52. In monocultures, the growth of all three strains was inhibited by UVB. In mixed cultures, enhanced UVB radiation resulted in decreased percentages of the two M. aeruginosa strains (19%–22% decrease on d 12 of the competition experiment). UVB radiation resulted in increased contents of chlorophyll a, b, and carotenoids (CAR) in C. microsphaera, and decreased contents of allophycocyanin (APC) or phycocyanin in the two Microcystis strains. All three strains showed increased levels of UVabsorbing compounds and intracellular reactive oxygen species under 0.372 W · m?2 UVB radiation, and decreased light compensation points, dark respiratory rates, and maximal quantum efficiency of PSII. After a 20 h recovery, the photosynthetic oxygen evolution of C. microsphaera was restored to its maximum value, but that of Microcystis strains continued to decrease. Nonphotochemical quenching was increased by UVB radiation in C. microsphaera, but was unaffected in the two M. aeruginosa strains. Our results indicated that C. microsphaera has a competitive advantage relative to Microcystis during exposure to UVB irradiation.  相似文献   

18.
Aims: To develop an in vitro flat‐bed perfusion biofilm model that could be used to determine the antimicrobial efficacy of topically applied treatments. Methods and Results: Pseudomonas aeruginosa and Staphylococcus aureus biofilms were grown within continuously perfused cellulose matrices. Enumeration of the biofilm density and eluate was performed at various sampling times, enabling determination of the biofilm growth rate. Two antimicrobial wound dressings were applied to the surface of mature biofilms and periodically sampled. To enable real‐time imaging of biofilm growth and potential antimicrobial kinetics, a bioluminescent Ps. aeruginosa biofilm was monitored using low‐light photometry. Target species produced reproducible steady‐state biofilms at a density of c. 107 per biofilm support matrix, after 24‐h perfusion. Test dressings elicited significant antimicrobial effects, producing differing kill kinetic profiles. There was a good correlation between photon and viable count data. Conclusions: The model enables determination of the antimicrobial profile of topically applied treatments against target species biofilms, accurately differentiating bactericidal from bacteriostatic effects. Moreover, these effects could be monitored in real time using bioluminescence. Significance and Impact of the Study: This is the first in vitro biofilm model which can assess the antimicrobial potential of topical therapies in a dynamic growth environment.  相似文献   

19.
Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu‐replete medium (263 fmol Cu′ · L?1) with maximum rates achieved at 200 μmol photons · m?2 · s?1. Lowering the Cu concentration at this irradiance to 30.8 fmol Cu′ · L?1 decreased cellular Cu quota by 7‐fold and reduced growth rate by 50%. Copper‐deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETRmax) than Cu‐sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low‐Cu medium (30.8 fmol Cu′ · L?1), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu‐replete cells when irradiance increased to 400 μmol photons · m?2 · s?1. Thus, at high light, low‐Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETRmax and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m?2 · s?1 to levels measured in Cu‐replete cells. Steady‐state uptake rates of Cu‐deficient and sufficient cells were light‐dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light‐stimulated Cu uptake.  相似文献   

20.
Aims: To investigate the antibiofilm effect of cinnamaldehyde on methicillin‐resistant Staphylococcus aureus (MRSA) and analyse the effect of subminimum inhibitory concentrations (MICs) of cinnamaldehyde on the expression of the biofilm‐related gene sarA. Methods and Results: The MICs and minimum bactericidal concentrations (MBCs) were determined using a microtitre broth dilution method. Biofilm susceptibility was determined using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) staining and colony forming unit (CFU) counting assays. Antibiofilm effects were studied with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). SarA expression was assessed by real‐time PCR. MICs and MBCs were in the range 0·0625–0·5% (v/v). The killing effects were concentration dependent. At a concentration of 5× MIC, all strains in biofilm were decreased to lower than 20% of the control groups. SEM and CLSM images indicated that a 5× MIC concentration of cinnamaldehyde was able to detach and kill existing biofilms. Apart from strain JB‐06, real‐time PCR showed that the expression of sarA of all other strains was decreased upon exposure to sub‐MICs of cinnamaldehyde. Conclusions: These data showed the strong killing effect of cinnamaldehyde against MRSA within biofilms. Significance and Impact of the Study: This study indicated the potential of cinnamaldehyde as an inhibitory agent for use in MRSA biofilm‐related infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号