共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eleonora Salvolini Eddi Buldreghini Guendalina Lucarini Arianna Vignini Alessia Giulietti Andrea Lenzi Laura Mazzanti Roberto Di Primio Giancarlo Balercia 《Histochemistry and cell biology》2014,142(5):569-575
Impaired male fertility may have a variety of causes, among which asthenozoospermia. In its etiology, several bioactive substances, such as cytokines may be involved. In this context, our aim was to evaluate the expression of interleukin-1β, cyclooxygenase-2, and hypoxia-inducible factor-1α, in spermatozoa isolated from normospermic fertile donors and asthenozoospermic infertile patients. We evaluated twenty-eight infertile patients affected by idiopathic asthenozoospermia and twenty-three normospermic fertile donors, age-matched. Sperm parameters were evaluated; immunohistochemical analysis and enzyme-linked immunosorbent assay were then performed in isolated spermatozoa. Spermatozoa from the asthenozoospermic group presented an increased expression of IL-1β, COX-2, and HIF-1α compared with the normospermic fertile subjects. Our results can lead us to speculate that the increased expression of these substances may influence sperm motility. Nevertheless, further studies are needed in order to assess whether these bioactive mediators have a potential relevance as targets in future therapeutic strategies for the treatment of male infertility. 相似文献
3.
4.
Fernández-Martínez AB Arenas Jiménez MI Lucio Cazaña FJ 《Biochimica et biophysica acta》2012,1821(4):672-683
We have previously shown in HK-2 cells that ATRA (all-trans-retinoic acid) up-regulates HIF-1α (hypoxia-inducible factor-1α) in normoxia, which results in increased production of renal protector VEGF-A (vascular endothelial growth factor-A). Here we investigated the role of COXs (cyclooxygenases) in these effects and we found that, i) ATRA increased the expression of COX-1 and COX-2 mRNA and protein and the intracellular levels (but not the extracellular ones) of PGE(2). Furthermore, inhibitors of COX isoenzymes blocked ATRA-induced increase in intracellular PGE(2), HIF-1α up-regulation and increased VEGF-A production. Immunofluorescence analysis found intracellular staining for EP1-4 receptors (PGE(2) receptors). These results indicated that COX activity is critical for ATRA-induced HIF-1α up-regulation and suggested that intracellular PGE(2) could mediate the effects of ATRA; ii) Treatment with PGE(2) analog 16,16-dimethyl-PGE(2) resulted in up-regulation of HIF-1α and antagonists of EP1-4 receptors inhibited 16,16-dimethyl-PGE(2)- and ATRA-induced HIF-1α up-regulation. These results confirmed that PGE(2) mediates the effects of ATRA on HIF-1α expression; iii) Prostaglandin uptake transporter inhibitor bromocresol green blocked the increase in HIF-1α expression induced by PGE(2) or by PGE(2)-increasing cytokine interleukin-1β, but not by ATRA. Therefore only intracellular PGE(2) is able to increase HIF-1α expression. In conclusion, intracellular PGE(2) increases HIF-1α expression and mediates ATRA-induced HIF-1α up-regulation. 相似文献
5.
Summary The use of -blockers has emerged as a beneficial treatment for cardiac hypertrophy. Hypoxia-inducible factor-1 (HIF-1) is tightly regulated in the ventricular myocardium. However, the expression of HIF-1 in cardiac hypertrophy due to pressure overload and after treatment with -blocker is little known. To evaluate the effect of carvedilol on both myocardial HIF-1 expression and cardiac hypertrophy, infra-renal aortic banding was performed for 4 weeks in adult Sprague-Dawley rats to induce cardiac hypertrophy. Carvedilol at 50 mg/kg body weight per day after surgery was given. Heart weight and the ratio of heart weight and body weight increased significantly after aortic banding for 4 weeks in the absence of drug treatment. Mean arterial pressure increased from 80 ± 9 mmHg in the sham group to 94 ±5 mmHg (p < 0.001) in the banding group. Echocardiography showed concentric hypertrophy after aortic banding. Mean arterial pressure decreased after treatment with carvedilol. The increased wall thickness and heart weight was reversed to normal by carvedilol. Western blot showed that HIF-1, vascular endothelial growth factor (VEGF) and brain natriuretic peptide (BNP) proteins were up-regulated and nerve growth factor- (NGF-) down-regulated in the banding group. Treatment with valsartan, doxazosin, or N-acetylcysteine did not significantly affect HIF-1 and VEGF proteins expression in the banding groups. Real-time polymerase chain reaction showed that mRNA of HIF-1, VEGF and BNP increased and mRNA of NGF- decreased in the banding group. Treatment with carvedilol reversed both protein and mRNA of HIF-1, VEGF, BNP, and NGF- to the baseline values. Increased immunohistochemical labeling of HIF-1, VEGF, and BNP in the ventricular myocardium was observed in the banding group and carvedilol again normalized the labeling. In conclusion, HIF-1, VEGF, and BNP mRNA and protein expression were up-regulated, while NGF- mRNA and protein was downregulated in the rat model of pressure-overloaded cardiac hypertrophy. Treatment with carvedilol is associated with a reversal of abnormal regulation of HIF-1,VEGF, BNP, and NGF- in the hypertrophic myocardium. 相似文献
6.
Amaya Lopez-Pascual Lorente-Cebrian Silvia Lorente-Cebrián María J. Moreno-Aliaga J. Alfredo Martinez Gonzalez-Muniesa Pedro González-Muniesa 《Journal of cellular physiology》2019,234(1):550-560
Obesity is a multifactorial, chronic, inflammatory disease that involves different processes, such as adipose tissue hypoxia. The aim of the current study was to characterize the effects of conditioned medium (CM) from lipopolysaccharide (LPS)-activated macrophages on the regulation of hypoxia-inducible factor 1α (HIF-1α)-related genes in murine adipocytes. For the in vitro analyses, 3T3-L1 murine adipocytes (9 days postdifferentiation) were incubated either in CM (25% medium of RAW 264.7 murine macrophages with 24 hr 500 ng/ml LPS), LPS at 500 ng/ml, or hypoxia (Hx; 1% O2, 94% N2, 5% CO2) for 24 hr. For the in vivo experiments, mice were fed a high-fat diet. Both epididymal white adipose tissue (eWAT) and adipocytes in CM showed upregulation of Glut1, Mcp1, Il10, Tnf, and Il1b. The secretion of IL-6, TNF-α, and MCP-1 was also increased in CM-treated adipocytes. Moreover, increased levels of HIF-1α subunit and nuclear factor kappa B p65 were found after CM treatment, linking Hx, and inflammation. HIF-1α directly bound vascular endothelial growth factor A (Vegfa) and uncoupling protein 2 (Ucp2) genes, up- and downregulating its expression, respectively. Furthermore, the oxygen consumption rate was 30% lower in CM. The siRNA knockdown of mammalian target of rapamycin (Mtor) reversed the induction of HIF-1α found in CM. The macrophage infiltration simulated through CM seems to be a similar environment to an abnormally enlarged eWAT. We have evidenced that HIF-1α plays a regulatory role in the expression of Vegfa and Ucp2 in CM. Finally, the inhibition of the mTOR pathway prevented the HIF-1α activation induced by CM. The involvement of HIF-1α under proinflammatory conditions provides insight into the origins of Hx in obesity. 相似文献
7.
8.
Ana B. Fernández-Martínez María I. Arenas Jiménez Francisco J. Lucio Cazaña 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(4):672-683
We have previously shown in HK-2 cells that ATRA (all-trans-retinoic acid) up-regulates HIF-1α (hypoxia-inducible factor-1α) in normoxia, which results in increased production of renal protector VEGF-A (vascular endothelial growth factor-A). Here we investigated the role of COXs (cyclooxygenases) in these effects and we found that, i) ATRA increased the expression of COX-1 and COX-2 mRNA and protein and the intracellular levels (but not the extracellular ones) of PGE2. Furthermore, inhibitors of COX isoenzymes blocked ATRA-induced increase in intracellular PGE2, HIF-1α up-regulation and increased VEGF-A production. Immunofluorescence analysis found intracellular staining for EP1-4 receptors (PGE2 receptors). These results indicated that COX activity is critical for ATRA-induced HIF-1α up-regulation and suggested that intracellular PGE2 could mediate the effects of ATRA; ii) Treatment with PGE2 analog 16,16-dimethyl-PGE2 resulted in up-regulation of HIF-1α and antagonists of EP1-4 receptors inhibited 16,16-dimethyl-PGE2- and ATRA-induced HIF-1α up-regulation. These results confirmed that PGE2 mediates the effects of ATRA on HIF-1α expression; iii) Prostaglandin uptake transporter inhibitor bromocresol green blocked the increase in HIF-1α expression induced by PGE2 or by PGE2-increasing cytokine interleukin-1β, but not by ATRA. Therefore only intracellular PGE2 is able to increase HIF-1α expression. In conclusion, intracellular PGE2 increases HIF-1α expression and mediates ATRA-induced HIF-1α up-regulation. 相似文献
9.
Zhang L Lim SL Du H Zhang M Kozak I Hannum G Wang X Ouyang H Hughes G Zhao L Zhu X Lee C Su Z Zhou X Shaw R Geum D Wei X Zhu J Ideker T Oka C Wang N Yang Z Shaw PX Zhang K 《The Journal of biological chemistry》2012,287(2):1520-1526
Genome-wide association study (GWAS) has identified genetic variants in the promoter region of the high temperature requirement factor A1 (HTRA1) gene associated with age-related macular degeneration (AMD). As a secreted serine protease, HTRA1 has been reported to interact with members of the transforming growth factor-β (TGF-β) family and regulate their signaling pathways. Growth differentiation factor 6 (GDF6), a member of the TGF-β family, is involved in ectoderm patterning and eye development. Mutations in GDF6 have been associated with abnormal eye development that may result in microphthalmia and anophthalmia. In this report, we identified a single nucleotide polymorphism (SNP) rs6982567 A/G near the GDF6 gene that is significantly associated with AMD (p value = 3.54 × 10(-8)). We demonstrated that the GDF6 AMD risk allele (rs6982567 A) is associated with decreased expression of the GDF6 and increased expression of HTRA1. Similarly, the HTRA1 AMD risk allele (rs10490924 T) is associated with decreased GDF6 and increased HTRA1 expression. We observed decreased vascular development in the retina and significant up-regulation of GDF6 gene in the RPE layer, retinal and brain tissues in HTRA1 knock-out (htra1(-/-)) mice as compared with the wild-type counterparts. Furthermore, we showed enhanced SMAD signaling in htra1(-/-) mice. Our data suggests a critical role of HTRA1 in the regulation of angiogenesis via TGF-β signaling and identified GDF6 as a novel disease gene for AMD. 相似文献
10.
Manalo DJ Baek JH Buehler PW Struble E Abraham B Alayash AI 《Biochemical and biophysical research communications》2011,416(3-4):421-426
11.
12.
Belibi F Zafar I Ravichandran K Segvic AB Jani A Ljubanovic DG Edelstein CL 《American journal of physiology. Renal physiology》2011,300(5):F1235-F1243
Cyst expansion in polycystic kidney disease (PKD) results in localized hypoxia in the kidney that may activate hypoxia-inducible factor-1α (HIF-1α). HIF-1α and autophagy, a form of programmed cell repair, are induced by hypoxia. The purposes were to determine HIF-1α expression and autophagy in rat and mouse models of PKD. HIF-1α was detected by electrochemiluminescence. Autophagy was visualized by electron microscopy (EM). LC3 and beclin-1, markers of autophagy, were detected by immunoblotting. Eight-week-old male heterozygous (Cy/+) and 4-wk-old homozygous (Cy/Cy) Han:SPRD rats, 4-wk-old cpk mice, and 112-day-old Pkd2WS25/- mice with a mutation in the Pkd2 gene were studied. HIF-1α was significantly increased in massive Cy/Cy and cpk kidneys and not smaller Cy/+ and Pkd2WS25/- kidneys. On EM, features of autophagy were seen in wild-type (+/+), Cy/+, and cpk kidneys: autophagosomes, mitophagy, and autolysosomes. Specifically, autophagosomes were found on EM in the tubular cells lining the cysts in cpk mice. The increase in LC3-II, a marker of autophagosome production and beclin, a regulator of autophagy, in Cy/Cy and cpk kidneys, followed the same pattern of increase as HIF-1α. To determine the role of HIF-1α in cyst formation and/or growth, Cy/+ rats, Cy/Cy rats, and cpk mice were treated with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). 2ME2 had no significant effect on kidney volume or cyst volume density. In summary, HIF-1α is highly expressed in the late stages of PKD and is associated with an increase in LC3-II and beclin-1. The first demonstration of autophagosomes in PKD kidneys is reported. Inhibition of HIF-1α did not have a therapeutic effect. 相似文献
13.
Sadeesh K. Ramakrishnan Matthew Taylor Aijuan Qu Sung-Hoon Ahn Madathilparambil V. Suresh Krishnan Raghavendran Frank J. Gonzalez Yatrik M. Shah 《Molecular and cellular biology》2014,34(7):1208-1220
Cholesterol synthesis is a highly oxygen-dependent process. Paradoxically, hypoxia is correlated with an increase in cellular and systemic cholesterol levels and risk of cardiovascular diseases. The mechanism for the increase in cholesterol during hypoxia is unclear. Hypoxia signaling is mediated through hypoxia-inducible factor 1α (HIF-1α) and HIF-2α. The present study demonstrates that activation of HIF signaling in the liver increases hepatic and systemic cholesterol levels due to a decrease in the expression of cholesterol hydroxylase CYP7A1 and other enzymes involved in bile acid synthesis. Specifically, activation of hepatic HIF-2α (but not HIF-1α) led to hypercholesterolemia. HIF-2α repressed the circadian expression of Rev-erbα, resulting in increased expression of E4BP4, a negative regulator of Cyp7a1. To understand if HIF-mediated decrease in bile acid synthesis is a physiologically relevant pathway by which hypoxia maintains or increases systemic cholesterol levels, two hypoxic mouse models were assessed, an acute lung injury model and mice exposed to 10% O2 for 3 weeks. In both models, cholesterol levels increased with a concomitant decrease in expression of genes involved in bile acid synthesis. The present study demonstrates that hypoxic activation of hepatic HIF-2α leads to an adaptive increase in cholesterol levels through inhibition of bile acid synthesis. 相似文献
14.
Anastasia Triantafyllou Panagiotis Liakos Andreas Tsakalof Georgia Chachami Efrosyni Paraskeva Pashalis-Adam Molyvdas 《Free radical research》2013,47(3):342-356
Quercetin, a flavonoid with anti-oxidant, metal chelating, kinase modulating and anti-proliferative properties, can induce hypoxia-inducible factor-1α (HIF-1α) in normoxia, but its mechanism of action has not been determined. In this study we characterized the induction of HIF-1α and the inhibition of cell proliferation caused by quercetin in HeLa and ASM (airway smooth muscle) cells and examined the effect of iron on these processes. Furthermore, we investigated the relevance of the intracellular levels of quercetin to HIF-1α expression and cell proliferation. Our data demonstrate that quercetin depletes intracellular calcein–chelatable iron and that supplying additional iron from extracellular or intracellular pools abrogates the induction of HIF-1α by quercetin. Moreover, addition of iron reverses the quercetin-induced inhibition of DNA synthesis, cell proliferation and cycle progression, but to different extents, depending on cell type. We propose that quercetin stabilises HIF-1α and inhibits cell proliferation predominantly by decreasing the concentration of intracellular iron through chelation. 相似文献
15.
16.
17.
18.
19.
Fibroblast growth factor 2 (FGF-2) has been found to play an anti-anabolic and/or a catabolic role in adult human articular cartilage via regulation of multiple signaling pathways. Upon FGF-2 stimulation, a molecular crosstalk between the mitogen activated protein kinase (MAPK) and protein kinase C δ (PKCδ) pathways are initiated, where PKCδ positively regulates downstream MAPK signaling. In this study, we explored the relationship between fibroblast growth factor receptor 1 (FGFR1), Ras, and PKCδ in FGF-2 signaling in human articular chondrocytes. Pathway-specific inhibition using both chemical inhibitors and siRNA targeting FGFR1 demonstrated that, upon FGF-2 stimulation, FGFR1 controlled both Ras and PKCδ activation, which converged on the Raf-MEK1/2-ERK1/2 axis. No crosstalk was observed between Ras and PKCδ. Quantitative PCR analyses revealed that both Ras and PKCδ contributed to FGF-2-mediated upregulation of MMP-13, ADAMTS5, and repression of aggrecan gene. Correspondingly, FGF-2-mediated proteoglycan loss was effectively reversed by individual pathway-specific inhibitor of Ras, PKCδ, and ERK1/2 in both 3-dimensional alginate bead culture and cartilage organ culture systems. Our findings suggest that FGFR1 interacts with FGF-2 and then activates Ras and PKCδ, which concertedly drive MAPK signaling to mediate biological effects of FGF-2. Such an integration of dual inputs constitutes a novel mechanism of FGF-2 signaling cascade in human articular chondrocytes. 相似文献