首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Normal maturation and functioning of the central auditory system affects the development of speech perception and oral language capabilities. This study examined maturation of central auditory pathways as reflected by age-related changes in the P1/N1 components of the auditory evoked potential (AEP). A synthesized consonant-vowel syllable (ba) was used to elicit cortical AEPs in 86 normal children ranging in age from 6 to 15 years and ten normal adults. Distinct age-related changes were observed in the morphology of the AEP waveform. The adult response consists of a prominent negativity (N1) at about 100 ms, preceded by a smaller P1 component at about 50 ms. In contrast, the child response is characterized by a large P1 response at about 100 ms. This wave decreases significantly in latency and amplitude up to about 20 years of age. In children, P1 is followed by a broad negativity at about 200 ms which we term N1b. Many subjects (especially older children) also show an earlier negativity (N1a). Both N1a and N1b latencies decrease significantly with age. Amplitudes of N1a and N1b do not show significant age-related changes. All children have the N1b; however, the frequency of occurrence of N1a increases with age. Data indicate that the child P1 develops systematically into the adult response; however, the relationship of N1a and N1b to the adult N1 is unclear. These results indicate that maturational changes in the central auditory system are complex and extend well into the second decade of life.  相似文献   

2.

Background

Paired associative stimulation (PAS) consisting of repeated application of transcranial magnetic stimulation (TMS) pulses and contingent exteroceptive stimuli has been shown to induce neuroplastic effects in the motor and somatosensory system. The objective was to investigate whether the auditory system can be modulated by PAS.

Methods

Acoustic stimuli (4 kHz) were paired with TMS of the auditory cortex with intervals of either 45 ms (PAS(45 ms)) or 10 ms (PAS(10 ms)). Two-hundred paired stimuli were applied at 0.1 Hz and effects were compared with low frequency repetitive TMS (rTMS) at 0.1 Hz (200 stimuli) and 1 Hz (1000 stimuli) in eleven healthy students. Auditory cortex excitability was measured before and after the interventions by long latency auditory evoked potentials (AEPs) for the tone (4 kHz) used in the pairing, and a control tone (1 kHz) in a within subjects design.

Results

Amplitudes of the N1-P2 complex were reduced for the 4 kHz tone after both PAS(45 ms) and PAS(10 ms), but not after the 0.1 Hz and 1 Hz rTMS protocols with more pronounced effects for PAS(45 ms). Similar, but less pronounced effects were observed for the 1 kHz control tone.

Conclusion

These findings indicate that paired associative stimulation may induce tonotopically specific and also tone unspecific human auditory cortex plasticity.  相似文献   

3.
Auditory event-related potentials (ERPs) were assessed in young and elderly subjects when stimulus intensity (40 vs. 60 dB SL) and standard/target tone frequency (250/500 Hz and 1000/2000 Hz) were manipulated to study the effects of these variables on the P3(00) and N1, P2 and N2 components. Auditory thresholds for each stimulus type were obtained, and the stimulus intensity was adjusted to effect perceptually equal intensities across conditions for each subject. Younger subjects demonstrated larger P3 amplitudes and shorter latencies than elderly subjects. The low frequency stimuli produced larger P3 amplitude and shorter latencies than the high frequency stimuli. Low intensity stimuli yielded somewhat smaller P3 amplitudes and longer peak latencies than high intensity stimulus tones. Although additional stimulus intensity and frequency effects were obtained for the N1, P2 and N2 components, these generally differed relatively little with subject age. The findings suggest that auditory stimulus parameters contribute to P3 measures, which are different for young compared to elderly subjects.  相似文献   

4.
Previous work indicated that components of the auditory thalamocortical potential evoked by a brief binaural tone burst could be enhanced by certain stimulus combinations, e.g., a brief tone burst in the presence of a continuous tone. The principal questions of the present study were whether enhaced components could be obtained caudal to thalamocortex and whether monaural stimuli would be effective in producing enhancement. Eight cats received electrodes in cochlear nucleus and the nucleus of the inferior colliculus. Custom earmolds were made for each ear of each animal. The median attenuation produced by the earmolds was 35 dB and the use of a single earmold approximated monaural stimulation. Auditory evoked potentials were recorded from the electrodes while the animals were unanesthetized but comfortably restrained. Brief 6.25 kHz tone bursts were presented against a background of silence or of a 4.96 kHz continuous tone. In the presence of the continuous tone, enhanced components were obtained from a majority of the electrodes in inferior colliculus but from none of the electrodes in cochlear nucleus. The late negative component in the colliculus potential was increased in amplitude while other components were reduced in amplitude by the continuous tone. The latencies of all components from all electrodes were increased by the presence of the continuous tone. It was concluded that enhancement effects could be obtained at the level of inferior colliculus, and that binaural stimulation does not appear to be necessary to produce enhanced components.  相似文献   

5.
Brain-stem auditory evoked potentials (BAEPs) were recorded in 10 common marmosets (Callithrix jacchus) to investigate the effects of recording electrode configurations, stimulus rate, and stimulus frequency on BAEP wave forms and peak latencies. Tone burst stimulations were used to evaluate the effects of pure tone on BAEP wave forms. Five positive peaks superimposed on positive and negative slow potentials were identified in the BAEP recorded at the linkage between the vertex and the dorsal base of the ear ipsilateral to a monaural stimulus. When the reference electrode was placed at the ipsilateral mastoid or the neck, the amplitudes of positive and negative slow potentials and the incidence of wave I increased. There were no significant changes in peak latencies of BAEP waves with changes in stimulus rate from 5 to 20/s. It was possible to record the BAEPs in response to tone burst stimulations at frequencies extending from 0.5 to 99 kHz. Wave I appeared apparently at high stimulus frequencies; while waves III to V, at low frequencies. Wave II was recorded at frequencies ranging from 0.5 to 99 kHz and comprised a superposition of 2 or 3 potentials.  相似文献   

6.
Physical exercise and the training effects of repeated practice of skills over an extended period of time may have additive effects on brain networks and functions. Various motor skills and attentional styles can be developed by athletes engaged in different sports. In this study, the effects of fast ball sports and dance training on attention were investigated by event related potentials (ERP). ERP were recorded in auditory and visual tasks in professional dancer, professional fast ball sports athlete (FBSA) and healthy control volunteer groups consisting of twelve subjects each. In the auditory task both dancer and FBSA groups have faster N200 (N2) and P300 (P3) latencies than the controls. In the visual task FBSA have faster latencies of P3 than the dancers and controls. They also have higher P100 (P1) amplitudes to non-target stimuli than the dancers and controls. On the other hand, dancers have faster latencies of P1 and higher N100 (N1) amplitude to non-target stimuli and they also have higher P3 amplitudes than the FBSA and controls. Overall exercise has positive effects on cognitive processing speed as reflected on the faster auditory N2 and P3 latencies. However, FBSA and dancers differed on attentional styles in the visual task. Dancers displayed predominantly endogenous/top down features reflected by increased N1 and P3 amplitudes, decreased P1 amplitude and shorter P1 latency. On the other hand, FBSA showed predominantly exogenous/bottom up processes revealed by increased P1 amplitude. The controls were in between the two groups.  相似文献   

7.
Auditory and visual event-related brain potentials (ERPs) were used to complement neuropsychological and medical assessment in neurologically healthy subjects with asymptomatic and symptomatic human immunodeficiency virus type 1 (HIV-1) infection. Auditory and visual ERPs, recorded using standard oddball paradigms, disclosed delays in late waves (N2 and P3) in symptomatic subjects (CDC stage IV) when compared with matched controls. Abnormally delayed P3 waves in at least one modality were recorded in 41% of symptomatics and this was associated with deficits in neuropsychological performance, particularly psychomotor slowing. However, no differences in late wave latencies between asymptomatic and control subjects were found, though asymptomatics showed delays in auditory N1 and P2 latencies. The number of morphological abnormalities, such as indiscernible late waves as well as topographical variability of the P3 wave, was increased in both HIV seropositive groups and possibly indicates a distinct mechanism of impairment, different from latency delay. Whilst P3 delay in symptomatics was not associated with changes in immune function (T4 cells) there was, however, a link with anaemia and subclinical hepatic dysfunction.  相似文献   

8.
Endogenous components of evoked potentials resembling P300 in humans were sequentially studied in 3 cynomolgus monkeys (Macaca fascicularis) using an auditory ‘oddball’ paradigm. The two different auditory stimuli were 500 Hz and 4000 Hz tones, designated as the ‘frequent’ and ‘rare’ stimuli, respectively. The probability of ‘rare’ tone presentation was initially 0.2. We further used probabilities of 0.1, 0.3 and 0.5. The ‘rare’ stimulus was reinforced by electrical stimulation, which followed the onset of the high tone by 700 msec. After 3–5 training sessions, a late positive wave was observed following the ‘rare’ tone. The latency of this P300-like signal was 314±16.2 msec, and teh amplitude 23.6±3.14 μV. The amplitude of this potential was modified by changes in stimulus presentation probability and by withholding reinforcement.  相似文献   

9.
Fast habituation of the long-latency, vertex-recorded auditory evoked potential (AEP) peaks in humans was first described by Callaway (1973) as a reduction in AEP amplitude that occurs to the second of a pair of acoustic stimuli when both stimuli are presented with an interstimulus interval (ISI) of no more than 10 sec. When acoustic stimuli are presented in pairs with an ISI of 2 sec and an interpair interval (IPI) of approximately 10 sec, reduction in amplitude to the second tone occurs by as much as 30–50%. Fast habituation may depend somewhat on a subject's anticipation of the stimulus and on other factors related to attention and orienting. Studies in our laboratory have demonstrated this amplitude decrement to the second tone of a pair in human infants, children and adults and have explored the implications of this finding with respect to attentional processes and the allocation of cerebral resources. In the present investigation we describe an animal model of fast habituation. Here, vertex-recorded AEPs were obtained to paired tone stimuli delivered to awake adult male Sprague-Dawley rats chronically implanted with skull electrodes. Findings showed: (a) an AEP wave form with 8 distinct peaks, (b) for one component there was a marked decrement in amplitude from tone 1 to tone 2 in recordings obtained from an electrode placed slightly to the right of midline, and (c) that there were no significant differences in peak latencies across tones. This methodology may further our understanding of fast habituation in humans and may prove useful for studies of attention, orienting, and resource allocation using techniques that are not possible for use with human subjects.  相似文献   

10.
Auditory event-related brain potentials (ERP) in response to two different tone stimuli (1.1 kHz or 1 kHz, 80 dB, 50 ms; given by headphones at a regular interstimulus interval of 5 s with a probability distribution of 70:30) were recorded from 12 healthy male subjects (Ss) during four different conditions with two repetitions: A-60 dBA white noise (wN), no whole-body vibration (WBV); B-60 dBA wN plus sinusoidal WBV in the az-direction with a frequency of 2.01 Hz and acceleration of 2 m.s-2 root mean square; C-80 dBA wN, no WBV; D-80 dBA wN plus WBV. Each condition consisted of two runs of about 11 min interrupted by a break of 4 min. During the break with continuing exposure, but without auditory stimuli, Ss judged the difficulty of the tone-detection task and intensity of noise by means of cross-modality matching (CMM). Vibration-synchronous activity in the electrocardiogram was eliminated by a subtraction-technique. Noise caused an attenuation of the N1 and P2 amplitudes and prolongation of P3 latencies. The WBV did not cause systematic ERP effects. Condition B was associated with higher N1 and smaller P3 amplitudes. The factor "condition" had a significant effect on the peak latencies of P3 to target stimuli and the task difficulty judged by CMM. Both effects exhibited significant linear increases in the sequence of conditions A, B, C, D. For the evaluation of exposure conditions at work, it can be suggested that noise has a strong systematic effect which can be enhanced by WBV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Pteronotus parnellii uses the second harmonic (61-62 kHz) of the CF component in its orientation sounds for Doppler-shift compensation. The bat's inner ear is mechanically specialized for fine analysis of sounds at about 61-62 kHz. Because of this specialization, cochlear microphonics (CM) evoked by 61-62 kHz tone bursts exhibit prominent transients, slow increase and decrease in amplitude at the onset and cessation of these stimuli. CM-responses to 60-61 kHz tone bursts show a prominent input-output non-linearity and transients. Accordingly, a summated response of primary auditory neurones (N1) appears not only at the onset of the stimuli, but also at the cessation. N1-off is sharply tuned at 60-61 kHz, while N1-on is tuned at 63-64 kHz, which is 2 kHz higher than the best frequency of the auditory system because of the envelope-distortion originating from sharp mechanical tuning. Single peripheral neurones sensitive to 61-62 kHz sounds have an unusually sharp tuning curve and show phase-locked responses to beats of up to 3 kHz. Information about the frequencies of Doppler-shifted echoes is thus coded by a set of sharply tuned neurones and also discharges phase-locked to beats. Neurones with a best frequency between 55 and 64 kHz show not only tonic on-responses but also off-responses which are apparently related to the mechanical off-transient occuring in the inner ear and not to a rebound from neural inhibition.  相似文献   

12.

Background

Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset.

Methodology

Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as “virtual pitch”) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component.

Principal Findings

We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies.

Conclusions

Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in early auditory cortex.  相似文献   

13.
The amplitudes of all deflections of the slow auditory evoked potential (AEP) regularly decrease in alert subjects with the increase of stimulation rate. As compared with the late deflections (P2N2), the decrease of the amplitude of comparatively early deflections (N1P2) is more pronounced. It is a rather logarithmic, than a linear function of the interstimulus interval. The degree of amplitude diminution of slow AEPs due to a greater stimulation rate depends on the intensity of acoustic stimul: at greater sound intensities the decrease is more pronounced. The higher rates of stimulation produce, along with a decreased amplitude, a shorter peak latencies of all slow AEP deflections (except the peak of deflection P1). In narcotic (chloralhydrate) sleep higher rates of stimulation are not attended with any regular changes in the amplitude and peak latencies of the slow AEP.  相似文献   

14.
Replicable oscillatory potentials, time-locked to pattern stimuli (9.0° central; counterphase reversal at 2.13 Hz) were dissociated from conventional, broad-band VEPs recorded in healthy volunteers at occipital scalp locations by high-pass digital filtering at 17.0–20.0 Hz. Nine consecutive wavelets were identified with a 56.4 ± 8.4 msec mean latency of the first replicable wavelet and mean peak-to-peak amplitude varying between 0.9 and 2.0 μV. The first 2 wavelets had significantly shorter latencies than wave N70 of unfiltered VEP, whereas the last 2 wavelets had longer latencies than N145. Latency and amplitude values varied as a function of contrast and spatial frequency of the stimulus, with shorter latencies and larger amplitudes at 60–90% contrast level and tuning of amplitude at 5.0 c/deg. All wavelets were correlated with wave P100 of unfiltered VEP, while a correlation with N70 of VEP was observed only for those wavelets with latencies in the range of wave P100. Two patients with documented brain lesions involving the visual system are described as examples of oscillatory responses occurring irrespective of filter bandpass and instead of the expected conventional VEP when the generation of these is interfered with by brain pathology. A substantial cortical contribution to the origin of the oscillatory response is conceivable. It is suggested that the oscillatory response to pattern-reversal stimulation reflects events in the visual system that are parallel to, and partly independent of, the conventional VEP, with potential application in research or for clinical purposes.  相似文献   

15.
本研究观察了20例正常小儿和49例脑瘫小儿的下肢胫后神经刺激性短潜伏时头皮体感诱发电位(PTN-SSEP)。正常小儿在刺激后出现6个反应波(P18、N23、P31、N42、P54和N68),大脑左右两体感头皮的SSEP波形相似;时相基本相等,t检验表明两侧间无差异;电压除波P31外其余波也无显著差异。脑瘫小儿PTN-SSEP异常率达91.84%,有4种类型:正常型占8.16%、混合异常型57.14%、反应低下型6.12%及电压不对称型28.57%。经统计患儿左右头皮的SSEP、潜伏时和电压均有显著差异(P<0.05),其中P31和N42电压差值>50%。与正常小儿比较,患儿双侧反应降低,多数波潜伏时延长。患侧电压损失率>50%(P<0.001),波P18、N23和P31的潜伏时差异显著。结果提示.(1)正常小儿体感通路反应稳定,左右侧活动基本对称;(2)脑瘫小儿体感通路左右侧活动不对称,患侧传导机能下降,体感皮层反应减退。  相似文献   

16.
Auditory event-related potentials (ERP) were registered to the dichotically presented white noise stimuli (duration 1500 ms, band 150-1200 Hz). Abrupt or gradual change ofinteraural time difference in the middle of stimuli (750 ms after sound offset) was perceived as an apparent auditory image (AI) instant relocation or motion from the midline to one of the ears. In responses these stimuli two ERPs were observed: one to the sound onset, and second--to the onset of motion or AI relocation. ERPs to AI relocation differed from those to sound onset in longer components latencies (123 ms versus 105 ms for N 1,227 ms versus 190 ms for P2). In responses to AI motion component latencies were even longer (N1: 137 ms, P2: 240 ms); N1 amplitude was greater at sites contralateral to the AI motion direction.  相似文献   

17.
Reaction times (RTs) and event-related brain potentials (ERPs) were recorded in middle-aged (MA) and elderly (ELD) subjects performing an auditory selective attention task. Subjets attended to tone bursts of a specified pitch and ear of delivery and responded to occasional longer duration target tones (75 vs. 25 msec). Infrequent novel stimuli (computer synthesized sounds and digitized environmental noises) were also included in the stimulus sequence.No significant age-related differences were found in the speed or accuracy of target detection. However, in both groups, RTs were delayed (by more than 300 msec) to targets that followed novel sounds. The prolongation was greater following novel sounds in the attended ear, particularly in the ELD group.The effects of selective attention on ERPs to standard tones were isolated as negative difference waves (Nds) by subtracting ERPs to non-attended stimuli from ERPs to the same signals when attended. Nds had similar amplitudes, latencies of onset (60 msec), and distributions in ELD and MA groups. In both groups, Nd waves were more prominent following right ear stimulation, reflecting possible hemispheric asymmetries of generators in posterior temporal regions.The mismatch negativity (MMN) was isolated by subtracting ERPs to standard tones from ERPs to deviant stimuli. MMN amplitudes were reduced in the ELD group. There was also a significant change in MMN distribution with age: the MMN was larger over the right hemisphere for MA subjects but larger over the left for ELD subjects. Elderly subjects showed a trend toward smaller P3 amplitudes and delayed P3 latencies, but group differences did not reach statistical significance. ERPs to novel sounds were characterized by centrally distributed N2 and P3a components. Although the novel P3a was enhanced with attention, no novel Nd waves could be isolated. This suggests that novel sounds fell outside the focus of attention.  相似文献   

18.
We measured N1m and P2m components of the magnetic field responses that were elicited by random series of a tone burst given to the left ear and a monosyllabic speech sound given to the right ear. The magnetic responses had smaller amplitudes and/or longer peak latencies of the N1m and the P2m when the stimulus was preceded by a stimulus at the same ear than when preceded by a stimulus at the different ear. This reduction of the response by preceding stimulation of the same ear was significant over the hemisphere contralateral, but not ipsilateral, to the ear stimulated. The peak latencies of N1m and P2m were significantly longer in the response over the hemisphere contralateral than ipsilateral to the stimulated ear.  相似文献   

19.
The auditory abilities of the round goby Neogobius melanostomus were quantified using auditory evoked potential recordings, using tone bursts and conspecific call stimuli. Fish were tested over a range of sizes to assess effects of growth on hearing ability. Tests were also run with and without background noise to assess the potential effects of masking in a natural setting. Neogobius melanostomus detected tone bursts from 100 to 600 Hz with no clear best frequency in the pressure domain but were most sensitive to 100 Hz tone stimuli when examined in terms of particle acceleration. Responses to a portion of the N. melanostomus call occurred at a significantly lower threshold than responses to pure tone stimulation. There was no effect of size on N. melanostomus hearing ability, perhaps due to growth of the otolith keeping pace with growth of the auditory epithelium. Neogobius melanostomus were masked by both ambient noise and white noise, but not until sound pressure levels were relatively high, having a 5-10 dB threshold shift at noise levels of 150 dB re 1 μPa and higher but not at lower noise levels.  相似文献   

20.
The P300 (P3) event-related brain potential (ERP) was elicited in 16 demented patients presumed to be in the early stages of Alzheimer's disease and 16 normal control subjects well matched for age, sex, education and occupational level. All subjects performed a simple auditory discrimination task in which a target tone was presented randomly on 20% of the trials. P3 amplitude was smaller and peak latency longer for the Alzheimer patients compared to control subjects. A second ERP task also was administered in which the target tone occurred 50% of the time. Analysis of the target/standard tone presentation sequences indicated that the Alzheimer patient group demonstrated less amplitude difference between the target and standard sequences and longer overall latencies compared to the control group. The results that the P3 ERP component from auditory stimuli can provide useful information about Alzheimer's disease during its early stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号