首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipase from Burkholderia cepacia was encapsulated inside zirconia particles by biomimetic mineralization of K?ZrF? induced with protamine, a natural cationic protein. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) were employed for the characterization of the novel immobilized lipase. SEM and TEM images showed that both the zirconia particles with and without lipase have good spherical structures with average particle sizes of 150 nm. Fluorescence microscopy demonstrated that the lipase was indeed encapsulated inside the zirconia particles. The maximum immobilization capacity of the zirconia particles was 0.15 units/mg under optimum immobilization conditions. Biochemical characterization showed that the encapsulated lipase could retain most of its initial activity. Compared with free lipase, the encapsulated lipase exhibited improved thermal, pH, and recycling stabilities. After 8 weeks of storage, no substantial loss in catalytic activity was observed for the encapsulated lipase. The conversion of the kinetic resolution of (R,S)-1-phenylethanol with vinyl acetate as acetyl donor catalyzed by zirconia-immobilized lipase reached 49.9% with higher ee(s) of 99.9% under the following optimal conditions: octane as solvent, 0.1M (R,S)-1-phenylethanol, 70 mg immobilized lipase, 180 rpm, 50 °C for 48 h. After 6 cycles (288 h), the conversion and ee(s) were still 43% and 85%, respectively.  相似文献   

2.
Several alkyl-substituted methoxysilanes were evaluated as potential activity and stability enhancing agents for biomimetic silicification of Rhodosporidium toruloides D-amino acid oxidase (RtDAO). When methyl-substituted silanes along with tetramethoxysilane were used as silicic acid precursors for polyallylamine (PAA)--or R5 peptide-catalyzed silicic encapsulation, the RtDAO activity increased with the degree of substitution and the molar ratio up to 15 % of methyl-substituted silanes added. In the presence of 15 mol% trimethylmethoxysilane, the specific activities of encapsulated RtDAO catalyzed by PAA and R5 increased by 1.4- and 4.8-fold, respectively. For PAA-catalyzed encapsulation, a 2.4-fold increase occurred with 30 mol% n-propyltrimethoxysilane; this modification increased the T (m) value by 10 °C and gave a threefold longer half-life in the presence of 10 mM H(2)O(2) as compared to the encapsulation using tetramethoxysilane only.  相似文献   

3.
Abstract

The aim of this study was to prepare the encapsulation of Candida rugosa lipase (CRL) with magnetic sporopollenin. The sporopollenin was covalent immobilized onto magnetic nanoparticles (Fe3O4), grafted amino (APTES), or epoxy groups (EPPTMS). CRL was sol-gel encapsulated in the presence of magnetic sporopollenin/Fe3O4 nanoparticles. The influence of activation agents ([3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS), (3-Aminopropyl)triethoxysilane (APTES) and pH and thermal stabilities of the biocatalyst were assessed. Experimental data showed the improved catalytic activity at different pH and temperature values. At 60?°C, free lipase lost its initial activity within 80?min of time, although the encapsulated lipases retained their initial activities of about 65% by APTES and 60% by EPPTMS after 120?min of heat treatment at 60?°C. The catalytic properties of the encapsulated lipases were utilized to hydrolysis of racemic aromatic carboxylic acid methyl esters (Naproxen and 2-phenoxypropionic acid). The results show that the sporopollenin-based encapsulated lipase (Fe-A-Spo-E) has greater enantioselectivity and conversion in comparison with the encapsulated lipase without supports (lipase-enc).  相似文献   

4.
Candida rugosa lipase (CRL) was immobilized on glutaraldehyde-activated aminopropyl glass beads by using covalent binding method or sol-gel encapsulation procedure and improved considerably by fluoride-catalyzed hydrolysis of mixtures of RSi(OCH3)3 and Si(OCH3)4. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e. the hydrolysis of p-nitrophenylpalmitate (p-NPP). It has been observed that the percent activity yield of the encapsulated lipase was 166.9, which is 5.5 times higher than that of the covalently immobilized lipase. The enantioselective hydrolysis of racemic Naproxen methyl ester by immobilized lipase was studied in aqueous buffer solution/isooctane reaction system and it was noticed that particularly, the glass beads based encapsulated lipases had higher conversion and enantioselectivity compared to covalently immobilized lipase. In short, the study confirms an excellent enantioselectivity (E > 400) for the encapsulated lipase with an ee value of 98% for S-Naproxen.  相似文献   

5.
In the present study, iron oxide magnetite nanoparticles, prepared through a co-precipitation method, were coated with phosphonic acid or iminodicarboxylic acid derivatives of calix[4]arene to modulate their surfaces with different acidic groups. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through sol–gel encapsulation. The catalytic activities and enantioselectivities of the two encapsulated lipases in the hydrolysis reaction of (R/S)-naproxen methyl ester and (R/S)-2-phenoxypropionic acid methyl ester were assessed. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives; the encapsulated lipase with the phosphonic acid derivative of calix[4]arene had an excellent rate of enantioselectivity against the (R/S)-naproxen methyl and (R/S)-2-phenoxypropionic acid methyl esters, with E = 350 and 246, respectively, compared to the free enzyme. The encapsulated lipases (Fe-Calix-N(COOH)) and (Fe-Calix–P) showed good loading ability and little loss of enzyme activity, and the stability of the catalyst was very good; they only lost 6–11% of the enzyme’s activity after five batches.  相似文献   

6.
Li N  Ma D  Zong MH 《Journal of biotechnology》2008,133(1):103-109
Ionic liquid-containing systems offered new opportunities to enzymatic acylation of nucleosides. In Pseudomonas cepacia lipase-mediated benzoylation of floxuridine (FUdR), the enzyme performances, including enzyme activity and 3'-regioselectivity, were significantly enhanced by using [C(4)MIm]PF(6)-containing systems. It was observed that the enzyme performances not only depended on the anion of IL, but also on the cation, and that a proper combination between the cation and anion was critical to allow the enzyme to exhibit excellent performances. The optimal IL content in IL-containing systems is 5% (v/v). To gain a deeper insight into enzyme recognition, we extended benzoylation of FUdR catalyzed by P. cepacia lipase to its analogs. FUdR and its analogs could be biotransformed to the desired product by P. cepacia lipase in excellent conversion (>99%) and good to excellent 3'-regioselectivity (81-99%). Furthermore, the 3'-regioselectivity of P. cepacia lipase was enhanced with the increase of hydrophobicity of 5-substituent of the substrates, due to better hydrophobic interactions with Leu287 present in the active site.  相似文献   

7.
Lipase from Aspergillus niger was obtained from the solid-state fermentation of a novel agroindustrial residue, pumpkin seed flour. The partially purified enzyme was encapsulated in a sol–gel matrix, resulting in an immobilization yield of 71.4 %. The optimum pH levels of the free and encapsulated enzymes were 4.0 and 3.0, respectively. The encapsulated enzyme showed greater thermal stability at temperatures of 45 and 60 °C than the free enzyme. The positive influence of the encapsulation process was observed on the thermal stability of the enzyme, since a longer half-life t 1/2 and lower deactivation constant were obtained with the encapsulated lipase when compared with the free lipase. Kinetic parameters were found to follow the Michaelis–Menten equation. The K m values indicated that the encapsulation process reduced enzyme–substrate affinity and the V max was about 31.3 % lower than that obtained with the free lipase. The operational stability was investigated, showing 50 % relative activity up to six cycles of reuse at pH 3.0 at 37 °C. Nevertheless, the production of lipase from agroindustrial residue associated with an efficient immobilization method, which promotes good catalytic properties of the enzyme, makes the process economically viable for future industrial applications.  相似文献   

8.
In this work, a novel approach for lipase immobilization was exploited. Lipase from Burkholderia cepacia was encapsulated into κ-carrageenan by co-extrusion method to form a liquid core capsule. The diameter of the encapsulated lipase was found to be in the range of 1.3–1.8 mm with an average membrane thickness of 200 μm and 5% coefficient of variance. The encapsulation efficiency was 42.6% and 97% moisture content respectively. The encapsulated lipase was stable between pH 6 and 9 and temperature until 50 °C. The encapsulated lipase was stable until disintegration of the carrier when stored at 27 °C and retained 72.3% of its original activity after 6 cycles of hydrolysis of p-NPP. The encapsulated lipase was stable in various organic solvents including methanol, ethanol, iso-propanol, n-hexane and n-heptane. Kinetic parameters Km and Vmax were found to be 0.22 mM and 0.06 μmol/min for free lipase and 0.25 mM and 0.05 μmol/min for encapsulated lipase respectively.  相似文献   

9.
Lipase from Candida rugosa was encapsulated within a chemically inert sol–gel support prepared by polycondensation of the precursor tetraethoxysilane (TEOS) in the presence of polyethylene glycol (PEG) as additive. The properties of silica and their derivatives with regard to mean pore diameter, specific surface area, mean pore size, weight loss upon heating (thermogravimetric analysis, TGA) and 29Si and 13C NMR are reported. The pH optimum shifted from 7.8 to 6.7 and optimum temperature jumped from 36 to 60 °C upon enzyme encapsulation. Encapsulated lipase in presence of PEG (EN-PEG) exhibited higher stability in the range of 37–45 °C, but from 50 to 65 °C the EN-PEG was inactivated after seven cycles. Hydrolytic activity during long-term storage at room temperature decreased to 50% after 94 days. High diffusional resistance was observed for large oil concentration reducing hydrolytic effectiveness by 60% in the case of the encapsulated lipase. NMR, pore size and specific surface area data suggested an active participation of the lipase enzyme during gelling of the silica matrix. This lead to reduction of available Si–OH groups, larger pores and smaller surface area. Larger pores increase substrate diffusion that correlates well with higher hydrolytic activity of the TEOS–PEG sol–gel matrix encapsulated enzyme in comparison with other sol–gel supports.  相似文献   

10.
Cutinase from Fusarium solani pisi was encapsulated in sol-gel matrices prepared with a combination of alkyl-alkoxysilane precursors of different chain-lengths. The specific activity of cutinase in a model transesterification reaction at fixed water activity in n-hexane was highest for the precursor combination tetramethoxysilane/n-butyltrimetoxysilane (TMOS/BTMS) in a 1:5 ratio, lower and higher chain lengths of the mono-alkylated precursor or decreasing proportions of the latter relative to TMOS leading to lower enzyme activity. Results obtained using combinations of three precursors confirmed the beneficial effect of the presence of BTMS in the preparations. Scanning electron microscopy of the 1:5 TMOS/n-alkylTMS gels showed a direct correlation between the macropore dimensions and the alkyl chain length of the alkylated precursor and revealed that TMOS/n-octylTMS gels suffered extensive pore collapse during the drying process. The specific activity of TMOS/BTMS sol-gel entrapped cutinase was similar to that exhibited by the enzyme immobilized by adsorption on zeolite NaY. However, the incorporation of different additives (zeolites, silica, Biogel, grinded sol-gel, etc.) having in common the capability to react with residual silanol groups of the sol-gel matrix brought about remarkable enhancements of cutinase activity, despite the fact that the global porosity of the gels did not change. The behavior of the gels in supercritical CO 2 (sc-CO 2) paralleled that exhibited in n-hexane, although cutinase activity was ca. one order of magnitude lower (i.e. sol-gel encapsulation did not prevent the deleterious effect of CO 2. The impact that functionalization of some of the additives had on cutinase activity indicates that the enzyme/matrix interactions must play an important role. Some of the best additives from the standpoint of enzyme activity were also the best from the standpoint of its operational stability (ca. 80% retention of enzyme activity at the tenth reutilization cycle). None of the additives that proved effective for cutinase could improve the catalytic activity of sol-gel encapsulated Pseudomonas cepacia lipase.  相似文献   

11.
Enzymatic transesterification of soybean oil with methanol and ethanol was studied. Of the nine lipases that were tested in the initial screening, lipase PS from Pseudomonas cepacia resulted in the highest yield of alkyl esters. Lipase from Pseudomonas cepacia was further investigated in immobilized form within a chemically inert, hydrophobic sol-gel support. The gel-entrapped lipase was prepared by polycondensation of hydrolyzed tetramethoxysilane and iso-butyltrimethoxysilane. Using the immobilized lipase PS, the effects of water and alcohol concentration, enzyme loading, enzyme thermal stability, and temperature in the transesterification reaction were investigated. The optimal conditions for processing 10 g of soybean oil were: 35 degrees C, 1:7.5 oil/methanol molar ratio, 0.5 g water and 475 mg lipase for the reactions with methanol, and 35 degrees C, 1:15.2 oil/ethanol molar ratio, 0.3 g water, 475 mg lipase for the reactions with ethanol. Subject to the optimal conditions, methyl and ethyl esters formation of 67 and 65 mol% in 1h of reaction were obtained for the immobilized enzyme reactions. Upon the reaction with the immobilized lipase, the triglycerides reached negligible levels after the first 30 min of the reaction and the immobilized lipase was consistently more active than the free enzyme. The immobilized lipase also proved to be stable and lost little activity when was subjected to repeated uses.  相似文献   

12.
In the genome of Burkholderia cepacia strain IPT64, which accumulates a blend of the two homopolyesters poly(3-hydroxybutyrate), poly(3HB), and poly(3-hydroxy-4-pentenoic acid), poly(3H4PE), from sucrose or gluconate as single carbon source, the polyhydroxyalkanoate (PHA) synthase structural gene was disrupted by the insertion of a chloramphenicol-resistant gene cassette (phaC1::Cm). The suicide vector pSUP202 harboring phaC1::Cm was transferred to B. cepacia by conjugation. The inactivated gene was integrated into the chromosome of B. cepacia by homologous recombination. This mutant and also 15 N-methyl-N'-nitrosoguanidine (NMG)-induced mutants still accumulated low amounts of PHAs and expressed low PHA synthase activity. The analysis of the mutant phaC1::Cm showed that it accumulated about 1% of PHA consisting of 68.2 mol% 3HB and 31.8 mol% 3H4PE from gluconate. The wild-type, in contrast, accumulated 49.3% of PHA consisting of 96.5 mol% 3HB and 3. 5 mol% 3H4PE. Our results indicated that the genome of B. cepacia possesses at least two PHA synthase genes, which probably have different substrate specificities.  相似文献   

13.
洋葱伯克霍尔德菌(Burkholderia cepacia)在生物防治、生物降解等农业领域有着广泛的应用,它产生的脂肪酶则在有机合成、精细化工等领域潜力巨大。采用改良的TB-T平板筛选法从土壤中初步筛选出300株洋葱伯克霍尔德菌,然后用脂肪酶活性检测平板对300株菌进行筛选,最终获得6株脂肪酶产量高的菌,通过发酵发现6株菌均有较好的产脂肪酶能力。随后通过16S rDNA比对的方法将6株全部鉴定为B.cepacia。在此基础上,采用HaeⅢ-recA RFLP和基因种特异性PCR对6株菌进行了基因种鉴定,结果表明JWT16、G63YL、WJ158和JWT137属于Burkholderia cenocepacia菌,JWP9属于Burkhold-eria vietnamiensis,JWT267则属于Burkholderia multivorans。  相似文献   

14.
Bioimprinting and sol–gel encapsulation of lipases by silane precursors are efficient methods of enhancing lipase performance in non-aqueous medium. The correlation between bioimprinting, the alkyl-chain length of silane precursors, and the catalytic activity of gel-encapsulated lipase was investigated using a series of silane precursors: methyltrimethoxysilane (MTMS), vinyltrimethoxysilane (VTMOS), vinyltriethoxysilane (VTEOS), and n-octyltrimethoxysilane (OTMOS). The optimal parameters for lipase immobilization were also determined. Both bioimprinting and increasing the chain-length of alkyl groups, apparently by increasing hydrophobicity, significantly improved the specific activity and the total activity of the immobilized lipase. Compared to a non-imprinted MTMS/TMOS gel, the specific activity of an imprinted OTMOS/TMOS gel improved 14.4-fold, and the total activity improved 6.8-fold. Nitrogen adsorption–desorption assays and gel matrix surface characterization showed that the bioimprinting molecule and the hydrophobic alkyl groups of silane triggered lipase to change from the closed to the open conformation, and contributed to creating sol–gel matrices that were more porous and with less mass transfer resistance structure, apparently improving the activity of encapsulated lipase.  相似文献   

15.
In this work, lipase from Arthrobacter sp. was immobilized by sol–gel encapsulation to improve its catalytic properties. Various silanizing agents including vinyl-trimethoxy silane, octyl-trimethoxy silane, γ-(methacryloxypropyl)-trimethoxy silane (MAPTMS) and tetraethoxysilane (TEOS) were chosen as the precursors. Among them, MAPTMS was for the first time utilized to encapsulate lipases, and the prepared enzyme by copolymerization of MAPTMS and TEOS exhibited the highest activity in both the hydrolysis of p-nitrophenyl palmitate and the asymmetric acylation of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one. The effects of various immobilization parameters were investigated. Under the optimum conditions of MAPTMS/TEOS = 1/1 (mol/mol), water/silane molar ratio (R value) = 20 and lipase loading = 0.01 g/mL sol, the total activity of the immobilized enzyme reached up to 13.6-fold of the free form. Moreover, the encapsulated lipase exhibited higher thermal stability than the free form and retained 54% of the original activity after uses for 60 d. Enantioselectivity of enzyme was also improved with an E value of 150 after encapsulation from 85 for the free form.  相似文献   

16.
AIM: Statistical medium optimization for maximum production of a hyperthermostable lipase from Burkholderia cepacia and its validation in a bioreactor. METHODS AND RESULTS: Burkholderia cepacia was grown in shake flasks containing 1% glucose, 0.1% KH2PO4, 0.5% NH4Cl, 0.24% (NH4)2HPO4, 0.01% MgSO4.7H2O and 1% emulsified palm oil, at 45 degrees C and pH 7.0, agitated at 250 rev min(-1) with 6-h-old inoculum (2% v/v) for 20 h. A fourfold enhancement in lipase production (50 U ml(-1)) and an approximately three fold increase in specific activity (160 U mg(-1)) by B. cepacia was obtained in a 14 litre bioreactor within 15 h after statistical optimization following shake flask culture. The statistical model was obtained using face centred central composite design (FCCCD) with five variables: glucose, palm oil, incubation time, inoculum density and agitation. The model suggested no interactive effect of the five factors, although incubation period, inoculum and carbon concentration were the important variables. CONCLUSIONS: The maximum lipase production was 50 U ml(-1), with specific activity 160 U mg(-1) protein, in a 14 litre bioreactor after 15 h in a medium obtained after statistical optimization in shake flasks. Further, the model predicted reduction in time for lipase production with reduction in total carbon supply. SIGNIFICANCE AND IMPACT OF THE STUDY: Statistical optimization allows quick optimization of a large number of variables. It also provides a deep insight into the regulatory role of various parameters involved in enzyme production.  相似文献   

17.
Encapsulation of horseradish peroxidase (HRP) inside a peptide nanotube (PNT) was demonstrated and its activity was measured. Enzyme assay verified that 0.16 μg of the enzymes were encapsulated in 1mg of PNTs. The encapsulation was also verified with TEM, UV-vis spectroscopy, and FTIR. The activity of the encapsulated HRP was examined for thermal stability, long-term storage stability, and resistance to a denaturant. They showed good storage stability, retaining its activity up to 90%, while the free HRP lost 50% of its activity over the course of 18 days. At 55 °C, the encapsulated HRP activity remained 20% higher than that of the free HRP. With the denaturant, guanidinium hydrochloride (GdmHCl), the encapsulated HRP activity was maintained around 10% higher than the free HRP. This result proves that the encapsulation of HRP inside the PNT may be an effective way to keep the enzyme activity stable in various environments.  相似文献   

18.
Candida rugosa lipase was encapsulated within a sol–gel procedure and improved considerably by fluoride-catalyzed hydrolysis of mixtures of octyltriethoxysilane and tetraethoxysilane in the presence of magnetic sporopollenin. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e., the hydrolysis of p-nitrophenylpalmitate (p-NPP), and the enantioselective hydrolysis of racemic naproxen methyl ester, mandelic acid methyl ester or 2-phenoxypropionic acid methyl ester that were studied in aqueous buffer solution/isooctane reaction system. The encapsulated magnetic sporopollenin (Spo-M-E) was found to give 319 U/g of support with 342% activity yield. It has been observed that the percent activity yields and enantioselectivity of the magnetic sporopollenin encapsulated lipase were higher than that of the encapsulated lipase without support. The substrate specificity of the encapsulated lipase revealed more efficient hydrolysis of the racemic naproxen methyl ester and 2-phenoxypropionic acid methyl ester than racemic mandelic acid methyl ester. It was observed that excellent enantioselectivity (E > 400) was obtained for encapsulated lipase with magnetic sporopollenin with an ee value of S-Naproxen and R-2 phenoxypropionic acid about 98%.  相似文献   

19.
An all-aqueous sol-gel method for encapsulation of bacterial cells in porous silicate matrices towards the development of a biosensor is described. The sol-gel encapsulation of cells is achieved at room temperature and neutral pH. Furthermore, use of sodium silicate as precursor avoids generation of alcohol that can be detrimental to cells in contrast to the traditional alkoxide sol-gel encapsulation process. Moraxella spp. cells engineered to express recombinant organophosphorus hydrolase (OPH) on the cell surface were encapsulated and OPH enzymatic activity was measured for paraoxon hydrolysis. Kinetic parameters (Km and Vmax) as well as pH behavior of surface-expressed OPH were determined to evaluate the effect of encapsulation. Cells encapsulated by the sodium silicate method displayed higher activity retention compared to those by the traditional alkoxide process. Time-course studies over a 2-month period indicate that immobilization through the sodium silicate process led to a reduction in activity of approximately 5% as compared to approximately 30% activity reduction in case of free cells in buffer indicating that immobilization leads to stabilization, a key parameter in biosensor development.  相似文献   

20.
为实现对洋葱伯克霍尔脂肪酶的可控高效表达, 将目前被广泛使用的T7重组蛋白高效表达系统移植到洋葱伯克霍尔德菌(Burkholderia cepacia)G63中进行脂肪酶同源表达。首先采用PCR从大肠杆菌BL21(DE3)中得到T7 RNA 聚合酶基因(T7 RNAP)并将其克隆到致死质粒pJQ200SK上, 然后在T7 RNAP 前后各加入500 bp用于同源重组的片段, 再通过三亲本杂交把T7 RNAP整合到B. cepacia基因组上, 使T7 RNAP受到脂肪酶基因(lipA)启动子调控。接着把lipA和它的伴侣基因lipB单独或全部克隆到载体pUCPCM和pBBR22b上, 构建出pBBR22blipAB、pBBR22blipA、pUCPCMlipAB、pUCPCMlipA、pUCPCMΔlipAlipB、pUCPCMΔlipA、pUCPCMΔlipB七种表达质粒, 通过电转化将上述表达质粒转化到含T7 RNAP的B. cepacia宿主菌中, 最终得到一系列脂肪酶基因工程菌。通过摇瓶诱导发酵发现含表达质粒pUCPCMlipAB的工程菌脂肪酶酶活最高, 达到607 U/mg, 与野生菌相比酶活力提高2.8倍, 并且除含pUCPCMΔlipB的工程菌外, 其它工程菌的脂肪酶酶活均有不同程度提高。野生菌与工程菌pUCPCMlipAB的发酵液经硫酸铵沉淀, Sephadex G-75凝胶过滤纯化后, 比酶活分别为29 984 U/mg和30 875 U/mg。以上结果表明, 构建的基于T7表达系统的B. cepacia脂肪酶基因工程能有效提高脂肪酶的表达量, 同时说明分泌信号PelB和增强转录的核糖体接合位点对脂肪酶的表达有促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号