首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

3.
4.
5.
Carlberg C  Quack M  Herdick M  Bury Y  Polly P  Toell A 《Steroids》2001,66(3-5):213-221
The vitamin D(3) receptor (VDR) acts primarily as a heterodimer with the retinoid X receptor (RXR) on different types of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) response elements (VDREs). Therefore, DNA-bound VDR-RXR heterodimers can be considered as the molecular switches of 1alpha,25(OH)(2)D(3) signalling. Functional conformations of the VDR within these molecular switches appear to be of central importance for describing the biologic actions of 1alpha,25(OH)(2)D(3) and its analogues. Moreover, VDR conformations provide a molecular basis for understanding the potential selective profile of VDR agonists, which is critical for a therapeutic application. This review discusses VDR conformations and their selective stabilization by 1alpha,25(OH)(2)D(3) and its analogues, such as EB1089 and Gemini, as a monomer in solution or as a heterodimer with RXR bound to different VDREs and complexed with coactivator or corepressor proteins.  相似文献   

6.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

7.
8.
9.
10.
11.
The vitamin D receptor (VDR) is a member of the steroid/retinoid receptor superfamily of nuclear receptors that has potential tumor-suppressive functions. We show here that VDR interacts with and is regulated by BAG1L, a nuclear protein that binds heat shock 70-kDa (Hsp70) family molecular chaperones. Endogenous BAG1L can be co-immunoprecipitated with VDR from prostate cancer cells (ALVA31; LNCaP) in a ligand-dependent manner. BAG1L, but not shorter non-nuclear isoforms of this protein (BAG1; BAG1M/Rap46), markedly enhanced, in a ligand-dependent manner, the ability of VDR to trans-activate reporter gene plasmids containing a vitamin D response element in transient transfection assays. Mutant BAG1L lacking the C-terminal Hsc70-binding domain suppressed (in a concentration-dependent fashion) VDR-mediated trans-activation of vitamin D response element-containing reporter gene plasmids, without altering levels of VDR or endogenous BAG1L protein, suggesting that it operates as a trans-dominant inhibitor of BAG1L. Gene transfer-mediated elevations in BAG1L protein levels in a prostate cancer cell line (PC3), which is moderately responsive to VDR ligands, increased the ability of natural (1alpha,25(OH)(2) vitamin D(3)) and synthetic (1alpha, 25-dihydroxy-19-nor-22(E)-vitamin D(3)) VDR ligands to induce expression of the VDR target gene, p21(Waf1), and suppress DNA synthesis. Thus, BAG1L is a direct regulator of VDR, which enhances its trans-activation function and improves tumor cell responses to growth-suppressive VDR ligands.  相似文献   

12.
The antiproliferative effect of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) has been studied for a decade in diverse model systems, but the signalling pathways linking 1alpha,25(OH)(2)D(3) to cell cycle arrest remains unclear. In our attempt to establish a model system which would allow further identification of important players in the process of the 1alpha,25(OH)(2)D(3) imposed cell cycle arrest, we have isolated derivatives of the human breast cancer cell line MCF-7 and chosen two nearly 1alpha,25(OH)(2)D(3) resistant and two hypersensitive sub-clones. Investigation of cell cycle proteins regulated by 1alpha,25(OH)(2)D(3) in these clones indicates that activation of one component/pathway is responsible for the linkage between 1alpha,25(OH)(2)D(3) and growth arrest. Protein levels of the Vitamin D receptor (VDR) were elevated in sensitive cells upon 1alpha,25(OH)(2)D(3) treatment, whereas resistant clones were unable to induce VDR upon 1alpha,25(OH)(2)D(3) treatment. Our data show that VDR protein levels and the ability of a cell to induce VDR upon 1alpha,25(OH)(2)D(3) treatment correlate with the antiproliferative effects of 1alpha,25(OH)(2)D(3), and suggest that the level of VDR in cancer cells might serve as a prognostic marker for treatment of cancer with 1alpha,25(OH)(2)D(3) analogues.  相似文献   

13.
14.
Henry HL 《Steroids》2001,66(3-5):391-398
The kidney is the major source of the circulating dihydroxylated metabolites of vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] and 24R,25-dihydroxyvitamin D(3) [24R,25(OH)(2)D(3)]. The enzymes which catalyze the production of these two dihydroxylated vitamin D metabolites are the 25(OH)D(3)-1alpha-hydroxylase (1alpha-hydroxylase) and -24R-hydroxylase (24R-hydroxylase), respectively. While there is no controversy regarding the fundamental importance of the 1alpha-hydroxylase in the production of the steroid hormone 1alpha,25(OH)(2)D(3), the biologic significance of the 24R-hydroxylase has been the subject of ongoing discussion. Some hold that it is strictly catabolic, leading to side chain oxidation and cleavage of 25-hydroxylated vitamin D sterols, and others hold that it plays a biosynthetic role in the production of 24R,25(OH)(2)D(3) which has biologic activities distinct from those of 1alpha,25(OH)(2)D(3). The 24R-hydroxylase has properties in common with other multicatalytic steroidogenic enzymes: (1) the enzyme carries out multiple oxidative and carbon-carbon bond cleavages; (2) it utilizes two natural substrates; (3) its regulation varies depending on the cell or tissue in which it occurs. The purpose of this paper is to review the current literature relevant to the characteristics of the 24R-hydroxylase and its regulation in the context of other multicatalytic steroid hydroxylases in order to provide a perspective regarding its possible function as both a catabolic and activating enzyme in the vitamin D endocrine system.  相似文献   

15.
16.
The rapid effect of 1 alpha,25(OH(2))-vitamin D(3) [1 alpha, 25(OH(2))D(3)] on tyrosine kinase Src and its relationship to the vitamin D receptor (VDR) was investigated to further characterize the hormone signaling mechanism in chick muscle cells. Exposure of cultured myotubes to 1 alpha,25(OH(2))D(3) caused a time-dependent increase in Src activity, which was evident at 1 min (one-fold) and reached a maximum at 5 min (15-fold). Immunoblotting with anti-phosphotyrosine antibody of immunoprecipitated Src showed that the hormone decreased Src tyrosine phosphorylation state with maximal effects at 5 min. Using a database for protein consensus motifs we found a putative tyrosine phosphorylation site (amino acids 164-170: KTFDTTY) within the primary sequence of the chick VDR. When the myotube VDR was immunoprecipitated it appeared onto SDS-PAGE gels as a single band of 58 kDa recognized by an anti-phosphotyrosine antibody. Prior treatment of cells with (1)alpha,25(OH(2))D(3) significantly increased tyrosine phosphorylation of the VDR (two- to three-fold above basal levels). In agreement with Src being a SH2-domain containing protein involved in recognition of tyrosine-phosphorylated targets, immunoprecipitation with anti-Src antibody under native conditions followed by blotting with anti-VDR antibody, or using the antibodies in inverse order, showed that the VDR co-precipitates with Src, thus indicating the existence of a VDR/Src complex. Stimulation with the cognate VDR ligand significantly increased formation of the complex with respect to basal conditions. These results altogether provide the first evidence to date for 1 alpha,25(OH(2))D(3) activation involving Src association to tyrosine phosphorylated VDR.  相似文献   

17.
18.
More than 2,000 synthetic analogues of the biological active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), are presently known. Basically, all of them interfere with the molecular switch of nuclear 1alpha,25(OH)(2)D(3) signaling, which is the complex of the vitamin D receptor (VDR), the retinoid X receptor (RXR), and a 1alpha,25(OH)(2)D(3) response element (VDRE). Central element of this molecular switch is the ligand-binding domain (LBD) of the VDR, which can be stabilized by a 1alpha,25(OH)(2)D(3) analogue either in its agonistic, antagonistic, or non-agonistic conformation. The positioning of helix 12 of the LBD is of most critical importance for these conformations. In each of the three conformations, the VDR performs different protein-protein interactions, which then result in a characteristic functional profile. Most 1alpha,25(OH)(2)D(3) analogues have been identified as agonists, a few are antagonists (e.g., ZK159222 and TEI-9647), and only Gemini and some of its derivatives act under restricted conditions as non-agonists. The functional profile of some 1alpha,25(OH)(2)D(3) analogues, such as EB1089 and Gemini, can be modulated by protein and DNA interaction partners of the VDR. This provides them with some selectivity for DNA-dependent and -independent signaling pathways and VDRE structures.  相似文献   

19.
20.
In this article we show that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) stimulates the activity of the class IA phosphatidylinositol 3-kinase PI3Kalpha and its downstream target Akt in HL60, U937 and THP-1 myeloid leukaemic cell lines. Furthermore, we show that the classical nuclear vitamin D receptor (VDR(nuc)) is involved in this activation of the PI3K/Akt signalling in these cell lines. We have previously shown that the activity of steroid sulphatase is stimulated in HL60, U937 and THP-1 myeloid leukaemic cell lines by 1alpha,25(OH)(2)D(3) (Hughes et al., [2001] Biochem J 355:361-371; Hughes et al., [2005] J Cell Biochem 94:1175-1189; Hughes and Brown [2006] J Cell Biochem 98:590-617). In this article we show that the 1alpha,25(OH)(2)D(3)-stimulated increase in signalling via the PI3K/Akt pathway plays a role in the increase in steroid sulphatase activity in the HL60 U937 and THP-1 cell lines. We used a variety of pharmacological and biochemical approaches to show that activation of PI3Kalpha mediates the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells. We also show that the PI3K/Akt dependent activation of NF-kappaB plays a role in the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号