首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
4-aryl-2-amino-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitrile (1), 4-aryl-2-oxo-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitriles (2a-2c), 3-(6-aryl-1,2,5,6- tetrahydro-2-thioxopyrimidin-4-yl)-4-hydroxy-2H-chromen-2-one (3a, 3b) and pyrazol-3-yl-4-hydroxycoumarin derivatives (4a-4c, 5, 6a, 6b, 7a, 7b, and 8a-8c) were prepared in order to measure their % change dopamine release in comparison to amphetamine as reference, using PC-12 cells in different concentrations. In addition, the molecular modeling study of the compounds into 3BHH receptor was also demonstrated. The calculated inhibition constant (ki) implemented in the AutoDock program revealed identical correlation with the experimental results to that obtained binding free energy (ΔGb) as both parameters revealed reasonable correlation coefficients (R2) being 0.51 involving 10 compounds; (1, 2b, 2c, 3a, 3b, 4a, 4b, 6a, and 8c).  相似文献   

2.
Regioselective facile one-pot synthesis of 16 different sugar-based quinoline, naphthyridine, and xanthone derivatives is reported. The compounds are characterized by NMR spectroscopy and elemental analysis. The β-Anomeric form of the sugar moiety was identified from 1H NMR studies. Antimicrobial studies of these sugar-heterocyclic derivatives, 3a, 3b, 3f, 5c, 7a, 7b, and 7c show excellent activity against different microbes.  相似文献   

3.
Prion diseases appear to be caused by the aggregation of the cellular prion protein (PrP(C)) into an infectious form denoted PrP(Sc). The in vitro aggregation of the prion protein has been extensively investigated, yet many of these studies utilize truncated polypeptides. Because the C-terminal portion of PrP(Sc) is protease-resistant and retains infectivity, it is assumed that studies on this fragment are most relevant. The full-length protein can be distinguished from the truncated protein because it contains a largely structured, alpha-helical, C-terminal region in addition to an N terminus that is unstructured in the absence of metal ion binding. Herein, the in vitro aggregation of a truncated portion of the prion protein (PrP 90-231) and a full-length version (PrP 23-231) were compared. In each case, concentration-dependent aggregation was analyzed to discern whether it proceeds by a nucleation-dependent pathway. Both protein constructs appear to aggregate via a nucleated polymerization with a small nucleus size, yet the later steps differ. The full-length protein forms larger aggregates than the truncated protein, indicating that the N terminus may mediate higher-order aggregation processes. In addition, the N terminus has an influence on the assembly state of PrP before aggregation begins, causing the full-length protein to adopt several oligomeric forms in a neutral pH buffer. Our results emphasize the importance of studying the full-length protein in addition to the truncated forms for in vitro aggregation studies in order to make valid hypotheses about the mechanisms of prion aggregation and the distribution of aggregates in vivo.  相似文献   

4.
Compounds containing a quinone moiety represent an important class of biologically active molecules that are widespread in nature, displaying anticancer, antibacterial, antimalarial, and fungicidal activities. In the course of designing 2,3-disubstituted-1,4-naphthoquinones derivatives as potential cysteine protease inhibitors, two naphtho[2,3-d]isoxazole-4,9-dione-3-carboxylates, 1a and 1b, were obtained. The antiapoptotic potential of 1a and 1b was then evaluated and compared to that of naphthoquinone 4. Primary rat hepatocytes were incubated with synthesized naphthoquinone derivatives and then exposed to the apoptotic stimulus camptothecin. Our results indicate that naphtho[2,3-d]isoxazole-4,9-dione-3-carboxylates 1a and 1b exerted a potent protective role in camptothecin-induced apoptosis in primary rat hepatocytes. Both 1a and 1b significantly increased cell viability, while reducing nuclear fragmentation, caspase-3, -8 and -9 activation, and cytochrome c release induced by camptothecin. In addition, 1a and 1b were shown to up-regulate Bcl-XL, a pro-survival member of the Bcl-2 family of proteins, which modulates the mitochondrial pathway of apoptosis. Similar protective effects of quinone derivatives were seen in HuH-7 and PC12 cells incubated with distinct apoptotic stimuli, such as camptothecin, TGF-β1, or rotenone. Our results suggest that naphtho[2,3-d]isoxazole-4,9-dione-3-carboxylates 1a and 1b may act as potent, cytoprotective agents, through modulation of apoptotic pathways.  相似文献   

5.
《MABS-AUSTIN》2013,5(8):1479-1491
ABSTRACT

Significant amounts of soluble product aggregates were observed during low-pH viral inactivation (VI) scale-up for an IgG4 monoclonal antibody (mAb IgG4-N1), while small-scale experiments in the same condition showed negligible aggregation. Poor mixing and product exposure to low pH were identified as the root cause. To gain a mechanistic understanding of the problem, protein aggregation properties were studied by varying critical parameters including pH, hold time and protein concentration. Comprehensive biophysical characterization of product monomers and aggregates was performed using fluorescence-size-exclusion chromatography, differential scanning fluorimetry, fluorescence spectroscopy, and dynamic light scattering. Results showed IgG4-N1 partially unfolds at about pH 3.3 where the product molecules still exist largely as monomers owing to strong inter-molecular repulsions and favorable colloidal stability. In the subsequent neutralization step, however, the conformationally changed monomers are prone to aggregation due to weaker inter-molecular repulsions following the pH transition from 3.3 to 5.5. Surface charge calculations using homology modeling suggested that intra-molecular repulsions, especially between CH2 domains, may contribute to the IgG4-N1 unfolding at ≤ pH 3.3. Computational fluid dynamics (CFD) modeling was employed to simulate the conditions of pH titration to reduce the risk of aggregate formation. The low-pH zones during acid addition were characterized using CFD modeling and correlated to the condition causing severe product aggregation. The CFD tool integrated with the mAb solution properties was used to optimize the VI operating parameters for successful scale-up demonstration. Our research revealed the governing aggregation mechanism for IgG4-N1 under acidic conditions by linking its molecular properties and various process-related parameters to macroscopic aggregation phenomena. This study also provides useful insights into the cause and mitigation of low-pH-induced IgG4 aggregation in downstream VI operation.  相似文献   

6.
The three-dimensional structures of prion proteins (PrPs) in the cellular form (PrPC) include a stacking interaction between the aromatic rings of the residues Y169 and F175, where F175 is conserved in all but two so far analyzed mammalian PrP sequences and where Y169 is strictly conserved. To investigate the structural role of F175, we characterized the variant mouse prion protein mPrP[F175A](121-231). The NMR solution structure represents a typical PrPC-fold, and it contains a 310-helical β2-α2 loop conformation, which is well defined because all amide group signals in this loop are observed at 20 °C. With this “rigid‐loop PrPC” behavior, mPrP[F175A](121-231) differs from the previously studied mPrP[Y169A](121-231), which contains a type I β-turn β2-α2 loop structure. When compared to other rigid‐loop variants of mPrP(121-231), mPrP[F175A](121-231) is unique in that the thermal unfolding temperature is lowered by 8 °C. These observations enable further refined dissection of the effects of different single-residue exchanges on the PrPC conformation and their implications for the PrPC physiological function.  相似文献   

7.
A series of novel substituted imidazole derivatives were synthesized and have been screened in vivo for their hypotensive and acute toxicity activities. Out of seventeen compounds eight compounds (2b, 2c, 3b, 3c, 3f, 4a, 4b and 4c) have shown good hypotensive and bradycardiac responses. Compounds 3b, 3c, 3f and 4c have shown better activity than reference drug clonidine. All the compounds have shown ALD50 >1000 mg/kg with maximum in 2e and 4c (>1200 mg/kg).  相似文献   

8.
The structure of wild-type mouse prion protein mPrP(23-231) consists of two distinctive segments with approximately equal size, a disordered and flexible N-terminal domain encompassing residues 23-124 and a largely structured C-terminal domain containing about 40% of helical structure and stabilized by one disulfide bond (Cys(178)-Cys(213)). We have expressed a mPrP mutant with 4 Ala/Ser-->Cys replacements, two each at the N-(Cys(36), Cys(112)) and C-(Cys(134), Cys(169)) domains. Our specific aims are to study the interaction between N- and C-domains of mPrP during the oxidative folding and to produce stabilized isomers of mPrP for further analysis. Oxidative folding of fully reduced mutant, mPrP(6C), generates one predominant 3-disulfide isomer, designated as N-mPrP(3SS), which comprises the native disulfide (Cys(178)-Cys(213)) and two non-native disulfide bonds (Cys(36)-Cys(134) and Cys(112)-Cys(169)) that covalently connect the N- and C-domains. In comparison to wild-type mPrP(23-231), N-mPrP(3SS) exhibits an indistinguishable CD spectra, a similar conformational stability in the absence of thiol and a reduced ability to aggregate. In the presence of thiol catalyst and denaturant, N-mPrP(3SS) unfolds and generates diverse isomers that are amenable to further isolation, structural and functional analysis.  相似文献   

9.
The sequence of a host’s prion protein (PrP) can affect that host’s susceptibility to prion disease and is the primary basis for the species barrier to transmission. Yet within many species, polymorphisms of the prion protein gene (Prnp) exist, each of which can further affect susceptibility or influence incubation period, pathology and phenotype. As strains are defined by these features (incubation period, pathology, phenotype), polymorphisms may also lead to the preferential propagation or generation of certain strains. In our recent study of the mouse Prnpa and Prnpb polymorphisms (which produced the proteins PrPa and PrPb, respectively), we found differences in aggregation tendency, strain adaptability and conformational variability. Comparing our in vitro data with that of in vivo studies, we found that differing incubation periods between Prnpa and Prnpb mice can primarily be explained on the basis of faster or more efficient aggregation of PrPa. In addition, and more importantly, we found that the faithful propagation of strains in Prnpb mice can be explained by the ability of PrPb to adopt a wider range of conformations. This adaptability allows PrPb to successfully propagate the structural features of a seed. In contrast, Prnpa mice revert PrPb strains into PrPa -type strains, and overall they have a narrower distribution of incubation periods. This can be explained by PrPa having fewer preferred conformations. We propose that Prnp polymorphisms are one route by which certain prion strains may preferentially propagate. This has significant implications for prion disease, chronic wasting disease (CWD) in particular, as it is spreading through North America. Deer which are susceptible to CWD also carry polymorphisms which influence their susceptibility. If these polymorphisms also preferentially allow strain diversification and propagation, this may accelerate the crossing of species barriers and propagation of the disease up the food chain.  相似文献   

10.
Two hitherto unknown mixed-ligand tris chelated complexes containing 2-aminothiophenolate, [Et4N]2[MIV(NH-(C6H4)-S)(mnt)2] (M = Mo, 1a; W, 2a) and two mixed-ligand tris chelate complex containing N,N-diethyldithiocarbamate, [Et4N]2[MIV(Et2NS2)(mnt)2] (M = Mo, 1b; W, 2b) have been synthesized and characterized structurally. Although these complexes are supposed to be quite similar to the well-known symmetric tris chelate complexes of maleonitriledithiolate (mnt), [Et4N]2[MIV(mnt)3] (M = Mo, 1c; W, 2c), but display both trigonal prismatic and distorted trigonal prismatic geometry in their crystal structure indicating the possibility of an equilibrium between these two structural possibilities in solution. Unlike extreme stability of 1b, 2b, 1c and 2c, both 1a and 2a are highly unstable in solution. In contrast to one reversible reduction in case of 1b and 2b, 1a and 2a exhibited no possible reduction up to −1.2 V and two sequential oxidation steps which have been further investigated with EPR study. Differences in stability and electrochemical behavior of 1a, 1b, 2a and 2b have been correlated with theoretical calculations at DFT level in comparison with long known 1c and 2c.  相似文献   

11.
Two series of five membered heterocyclic bis(1,3,4-oxadiazole) derivatives 2(a-h) and 3,5-bis(substituted)pyrazoles, isoxazoles 3(a,b,d-i), 4(a-c) were synthesized via oxidative cyclization of some diaroylhydrazones using chloramine-T and cyclocondensation reaction with hydrazine hydrate and hydroxylamine hydrochloride, respectively. The newly synthesized compounds were screened for antioxidant and anti-microbial activities. Compounds 2(b), 3(b), and 4(a) showed higher antioxidant activity at 10 μg/ml while compounds 2(a), 3(a), 3(f), and 4(a) exhibited better anti-microbial activity at 100 μg/ml compared with standard vitamin C and ciprofloxacin, respectively. Structures of newly synthesized compounds were confirmed by elemental analysis and spectral IR, 1H NMR, and 13C NMR data.  相似文献   

12.
Structural studies of mammalian prion protein at pH values between 4.5 and 5.5 established that the N-terminal 100 residue domain is flexibly disordered. Here, we show that at pH values between 6.5 and 7.8, i.e. the pH at the cell membrane, the octapeptide repeats in recombinant human prion protein hPrP(23-230) encompassing the highly conserved amino acid sequence PHGGGWGQ are structured. The nuclear magnetic resonance solution structure of the octapeptide repeats at pH 6.2 reveals a new structural motif that causes a reversible pH-dependent PrP oligomerization. Within the aggregation motif the segments HGGGW and GWGQ adopt a loop conformation and a beta-turn-like structure, respectively. Comparison with the crystal structure of HGGGW-Cu(2+) indicates that the binding of copper ions induces a conformational transition that presumably modulates PrP aggregation. The knowledge that the cellular prion protein is immobilized on the cell surface along with our results suggests a functional role of aggregation in endocytosis or homophilic cell adhesion.  相似文献   

13.
Environmental factors, such as acidic pH, facilitate the assembly of α‐synuclein (α‐Syn) in aggregates, but the impact of pH on the very first step of α‐Syn aggregation remains elusive. Recently, we developed a single‐molecule approach that enabled us to measure directly the stability of α‐Syn dimers. Unlabeled α‐Syn monomers were immobilized on a substrate, and fluorophore‐labeled monomers were added to the solution to allow them to form dimers with immobilized α‐Syn monomers. The dimer lifetimes were measured directly from the fluorescence bursts on the time trajectories. Herein, we applied the single‐molecule tethered approach for probing of intermolecular interaction to characterize the effect of acidic pH on the lifetimes of α‐Syn dimers. The experiments were performed at pH 5 and 7 for wild‐type α?Syn and for two mutants containing familial type mutations E46K and A53T. We demonstrate that a decrease of pH resulted in more than threefold increase in the α‐Syn dimers lifetimes with some variability between the α‐Syn species. We hypothesize that the stabilization effect is explained by neutralization of residues 96–140 of α‐Syn and this electrostatic effect facilitates the association of the two monomers. Given that dimerization is the first step of α‐Syn aggregation, we posit that the electrostatic effect thereby contributes to accelerating α‐Syn aggregation at acidic pH. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 715–724, 2016.  相似文献   

14.
The rate‐limiting step in prion diseases is the initial transition of a prion protein from its native form into a mis‐folded state in which the protein not only forms cell‐toxic aggregates but also becomes infectious. Recent experiments implicate polyadenosine RNA as a possible agent for generating the initial seed. In order to understand the mechanism of RNA‐mediated mis‐folding and aggregation of prions, we dock polyadenosine RNA to mouse and human prion models. Changes in stability and secondary structure of the prions upon binding to polyadenosine RNA are evaluated by comparing molecular dynamics simulations of these complexes with that of the unbound prions.  相似文献   

15.
The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI+]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI+] and [PIN+] ([RNQ+]) (Genetics, Vol. 197, 685–700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI+] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ+] or [SWI+]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI+] prion stabilizes. Our finding provides strong evidence supporting the “cross-seeding” model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.  相似文献   

16.
5-Arylidene-2-thioxo-4-thiazolidinones 3a-f react with each of 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl and α-d-galactopyranosyl bromides 4a,b in acetone in the presence of aqueous potassium hydroxide at room temperature to afford N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl) or N-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl) 2-thioxo-4-thiazolidinone derivatives 5a-f. Similarly, the reaction of 5-cycloalkylidene-2-thioxo-4-thiazolidinones 7a,b with 4a gave the corresponding N-glucosides 8a,b. Also, 5-pyrazolidene rhodanines 10a-e react with 4a to afford the new N-glucosides 11a-e. Treatment of compounds 15 and 16 with 4a in the presence of few drops of triethylamine or in KOH solution accomplished the mono- and bis-nucleosides 17 and 18, respectively. Some selected products were tested for their antimicrobial activities.  相似文献   

17.

Background

Among adenosine receptors (ARs) the A2B subtype exhibits low affinity for the endogenous agonist compared with the A1, A2A, and A3 subtypes and is therefore activated when concentrations of adenosine increase to a large extent following tissue damages (e.g. ischemia, inflammation). For this reason, A2B AR represents an important pharmacological target.

Methods

We evaluated seven 1-benzyl-3-ketoindole derivatives (79) for their ability to act as positive or negative allosteric modulators of human A2B AR through binding and functional assays using CHO cells expressing human A1, A2A, A2B, and A3 ARs.

Results

The investigated compounds behaved as specific positive or negative allosteric modulators of human A2B AR depending on small differences in their structures. The positive allosteric modulators 7a,b and 8a increased agonist efficacy without any effect on agonist potency. The negative allosteric modulators 8b,c and 9a,b reduced agonist potency and efficacy.

Conclusions

A number of 1-benzyl-3-ketoindole derivatives were pharmacologically characterized as selective positive (7a,b) or negative (8c, 9a,b) allosteric modulators of human A2B AR.

General significance

The 1-benzyl-3-ketoindole derivatives 79 acting as positive or negative allosteric modulators of human A2B AR represent new pharmacological tools useful for the development of therapeutic agents to treat pathological conditions related to an altered functionality of A2B AR.  相似文献   

18.
Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three‐dimensional structure domain was constructed from three segments murine PrP (mPrP)(90–177), mPrP(178–212), and mPrP(213–230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C‐terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The synthesis of the unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl nucleosides of 5-fluorouracil (6a), N6-benzoyl adenine (6b), uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e), is described. Monoiodination of compounds 1a,b, followed by acetylation, catalytic hydrogenation and finally regioselective 2′-O-deacylation afforded the partially acetylated dideoxynucleoside analogues of 5-fluorouracil (5a) and N6-benzoyl adenine (5b), respectively. Direct oxidation of the free hydroxyl group at the 2′-position of 5a,b, with simultaneous elimination reaction of the β-acetoxyl group, afforded the desired unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl derivatives 6a,b. Compounds 1c-e were used as starting materials for the synthesis of the dideoxy unsaturated carbonyl nucleosides of uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e). Similarly a protection-selective deprotection sequence followed by oxidation of the free hydroxyl group at the 2′-position of the dideoxy benzoylated analogues 9c-e with simultaneous elimination reaction of the β-benzoyl group, gave the desired nucleosides 6c-e. None of the compounds was inhibitory to a broad spectrum of DNA and RNA viruses at subtoxic concentrations. The 5-fluorouracil derivative 6a was more cytostatic (50% inhibitory concentration ranging between 0.2 and 12 μM) than the other compounds.  相似文献   

20.
Transmissible spongiform encephalopathies are centered on the conformational transition of the prion protein from a mainly helical, monomeric structure to a β-sheet rich ordered aggregate. Experiments indicate that the main infectious and toxic species in this process are however shorter oligomers, formation of which from the monomers is yet enigmatic. Here, we created 25 variants of the mouse prion protein site-specifically containing one genetically-incorporated para-benzoyl-phenylalanine (pBpa), a cross-linkable non-natural amino acid, in order to interrogate the interface of a prion protein-dimer, which might lie on the pathway of oligomerization. Our results reveal that the N-terminal part of the prion protein, especially regions around position 127 and 107, is integral part of the dimer interface. These together with additional pBpa-containing variants of mPrP might also facilitate to gain more structural insights into oligomeric and fibrillar prion protein species including the pathological variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号