首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A patient with severe idiopathic edema and long history of diuretic abuse had, in response to salt loading, an inability to increase urinary sodium excretion associated with a paradoxical response (decrease) of urinary dopamine excretion, a non suppressible aldosterone and non stimulable immunoreactive atrial natriuretic factor in plasma. These patterns distinguished this patient from those with a milder form of idiopathic edema who did not abuse diuretics and had, in comparison with controls, marginally decreased urinary sodium and dopamine responses but normal aldosterone suppressibility and ANF stimulability. Since the natriuretic action of ANF appears to be mediated by dopaminergic mechanisms, this severe natriuretic handicap may be due to a chronic diuretic abuse-induced combined ANF and dopamine deficiency.  相似文献   

2.
Salt-sensitive hypertension is a characteristic of the metabolic syndrome. Given the links to cardiovascular events, the mechanisms underlying sodium metabolism may represent an important therapeutic target for this disorder. Angiotensin II (AII) is a key peptide underlying sodium retention. However, 5'AMP-activated protein kinase (AMPK) has also been reported to participate in the regulation of ion transport. In this study we examined the relationship between AII and AMPK on the development of hypertension in two salt-sensitive mouse models. In the first model, the mice were maintained on a high-fat diet (HFD) for 12 weeks, in order to develop features similar to the metabolic syndrome, including salt-sensitive hypertension. HFD-induced obese mice showed elevated systolic blood pressure and lower sodium excretion in response to salt loading, along with an increase in AII contents and inactivation of AMPK in the kidney, which were significantly improved by the treatment of an angiotensin II antagonist, losartan, for 2 weeks. To clarify the effects of AII, a second group of mice was infused with AII via an osmotic pump, which led to higher systolic blood pressure, and decreases in urinary sodium excretion and the expression of AMPK, in a manner similar to those observed in the HFD mice. However, treatment with an AMPK activator, metformin, improved the changes induced by the AII, suggesting that AII induced sodium retention works by acting on AMPK activity. Finally, we evaluated the changes in salt-sensitivity by performing 2-week salt loading experiments with or without metformin. AII infusion elevated blood pressure by salt loading but metformin prevented it. These findings indicate that AII suppresses AMPK activity in the kidney, leading to sodium retention and enhanced salt-sensitivity, and that AMPK activation may represent a new therapeutic target for obesity-related salt-sensitive hypertension.  相似文献   

3.
To analyze the conflicting data on the relationship between sodium intake and catecholamine release, the effect of the duration of high sodium loading on cardiovascular response and catecholamine release was examined in conscious rats. Urinary excretions of norepinephrine (NE), and dopamine (DA) were measured frequently over a 4 week period. Male Wistar rats at 4 weeks of age were given a diet containing either basal (0.3%) or high (3.1%) sodium content. Systolic blood pressure was measured weekly by the tail cuff method. Twenty-four hour urine collections were made for analysis of catecholamines in metabolic cages every other day during the initial 2 weeks and once a week in the following 2 weeks of salt loading. High sodium intake resulted in a rise in blood pressure and a reduction in heart rate. Bradycardia was significant during the initial 2 weeks and not significant during the following 2 weeks after the initiation of salt loading. Urinary excretion of NE did not change during the initial 2 weeks of salt loading but increased significantly following the 2 week period after salt loading. Urinary excretion of DA increased diphasically, showing the first peak at 1 week after salt loading and the second peak at 4 weeks after the initiation of salt loading. These results suggest that the heart rate and urinary excretion of catecholamine are influenced by the duration of salt loading. When we estimate the effect of salt loading on cardiovascular response and urinary excretion of catecholamine, we should draw attention to the importance of the duration of salt loading, because this duration of time further elicites delayed response in the sympathetic nervous system.  相似文献   

4.
Activation of rat adenosine(2A) receptors (A(2A) R) dilates preglomerular microvessels, an effect mediated by epoxyeicosatrienoic acids (EETs). High salt (HS) intake increases epoxygenase activity and adenosine levels. A greater vasodilator response to a stable adenosine analog, 2-chloroadenosine (2-CA), was seen in kidneys obtained from HS-fed rats which was mediated by increased EET release. Because this pathway is antipressor, we examined the role of the A(2A) R-EET pathway in a genetic model of salt-sensitive hypertension, the Dahl salt-sensitive (SS) rats. Dahl salt resistant (SR) rats fed a HS diet demonstrated a greater renal vasodilator response to 2-CA. In contrast, Dahl SS rats did not exhibit a difference in the vasodilator response to 2-CA whether fed normal salt (NS) or HS diet. In Dahl SR but not Dahl SS rats, HS intake significantly increased purine flux, augmented the protein expression of A(2A) R and cytochrome P450 2C23 and 2C11 epoxygenases, and elevated the renal efflux of EETs. Thus the Dahl SR rat is able to respond to HS intake by recruiting EET formation, whereas the Dahl SS rat appears to have exhausted its ability to increase EET synthesis above the levels observed on NS intake. In vivo inhibition of the A(2A) R-EET pathway in Dahl SR rats fed a HS diet results in reduced renal EETs levels, diminished natriuretic capacity and hypertension, thus supporting a role for the A(2A) R-EET pathway in the adaptive natriuretic response to modulate blood pressure during salt loading. An inability of Dahl SS rats to upregulate the A(2A) R-EET pathway in response to salt loading may contribute to the development of salt-sensitive hypertension.  相似文献   

5.
To examine the previous suggestion that the endogenous dopaminergic activity would be increased in patients with primary aldosteronism, dose-response curves of aldosterone and prolactin stimulation by the dopamine antagonist metoclopramide were established in a pilot study by injecting metoclopramide 1, 2.5, and 10 mg i.v. consecutively at hourly intervals to 6 patients with primary aldosteronism and 14 healthy volunteers. All three metoclopramide doses induced clear-cut rises in aldosterone levels both in patients with primary aldosteronism and healthy controls. Basal aldosterone concentration was higher in range in the patients but the dose-response curves were nearly parallel one with the other. Prolactin responsiveness was also very similar. Thus, the present findings do not support the hypothesis of an increase in endogenous dopaminergic activity in primary aldosteronism.  相似文献   

6.
Almost 50% of hypertensive individuals manifest blood pressure changes in response to salt depletion or repletion and are termed "salt sensitive" (SS). Blunted activity of the endothelin (ET) system and the renin-angiotensin-aldosterone system (RAAS) have been reported as possible mechanisms contributing to salt sensitivity. Data are available that endothelin receptor subtype B (ETBR)-deficient rats develop salt-sensitive hypertension when fed a high-salt diet. Whether the ETBR gene (EDNRB) is involved in genetic predisposition to human salt-sensitive hypertension has not been studied so far. We screened EDNRB in 104 hypertensive patients (49 salt sensitive and 55 salt resistant) and 110 normotensive controls. No new sequence variation was found, but genotype distribution of the common polymorphism G1065A revealed that the AA + GA genotypes were significantly more frequent in salt-resistant than in salt-sensitive individuals (p = 0.007), suggesting a protective role for the A allele. We also screened angiotensinogen gene AGT M235T and angiotensin-converting enzyme insertion/deletion polymorphism ACE I/D and found an association between TT genotype and hypertension. A possible synergistic effect to salt-sensitive hypertension was found by combining EDNRB GG with ACE DD/ID genotypes. In conclusion, our data confirm the role of ET system and RAAS in salt-sensitive hypertension.  相似文献   

7.
To investigate the mechanism of the central action of dopamine and its antagonist, metoclopramide, on the regulation of aldosterone, studies were performed in 54 conscious rats with and without bilateral nephrectomy. In normal and sham-operated rats, intracerebroventricular injection of dopamine resulted in a significant suppression of plasma renin activity and plasma aldosterone at 30 min, and intracerebroventricular injection of metoclopramide resulted in a significant elevation of plasma renin activity and plasma aldosterone at 30 min without altering the plasma corticosterone and potassium levels. In bilaterally nephrectomized rats, the plasma renin activity was significantly reduced and it did not respond to dopamine or metoclopramide. In these rats, intracerebroventricular injection of metoclopramide exerted no effect on the plasma aldosterone, but intracerebroventricular injection of dopamine increased the plasma aldosterone slightly. However, this increase was not statistically significant. These findings suggest that the dopaminergic system in the brain is involved in the regulation of aldosterone secretion, mainly with changes in the peripheral renin-angiotensin axis in rats.  相似文献   

8.
Adrenomedullin reduces systemic blood pressure and increases urinary sodium excretion partly through the release of nitric oxide. We hypothesized that chronic adrenomedullin infusion ameliorates salt-sensitive hypertension and increases the expression of renal nitric oxide synthase (NOS) in Dahl salt-sensitive (DS) rats, because the reduced renal NOS expression promotes salt sensitivity. DS rats and Dahl salt-resistant (DR) rats were fed a high sodium diet (8.0% NaCl) for 3 weeks. The high sodium diet resulted in an increase in blood pressure and a reduction of urinary sodium excretion in association with increased renal adrenomedullin concentrations and decreased expression of renal neuronal NOS (nNOS) and renal medullary endothelial NOS (eNOS) in DS rats compared with DR rats. Chronic adrenomedullin infusion partly inhibited the increase of blood pressure and proteinuria in association with a restoration of renal nNOS and medullary eNOS expression in DS rats under the high sodium diet. The immunohistochemical analysis revealed that the restored renal nNOS expression induced by chronic adrenomedullin infusion may reflect the restoration of nNOS expression in the macula densa and inner medullary collecting duct. These results suggest that adrenomedullin infusion has beneficial effects on this hypertension probably in part through restored renal NOS expression in DS rats.  相似文献   

9.
Dawson R  Liu S  Jung B  Messina S  Eppler B 《Amino acids》2000,19(3-4):643-665
Summary. Taurine is present in high concentrations in mammalian tissues and has been implicated in cardiovascular control mechanisms. The aim of the present study was to evaluate the ability of taurine to attenuate salt-induced elevations in blood pressure and markers of damage to the kidney and cardiovascular system in stroke prone spontaneously hypertensive rats (SPSHR). Male SPSHR (6 weeks old) were placed on high salt diets that contained 1% (w/w) NaCl added to their normal chow for 84 days and then were switched to 3% added NaCl for the remaining 63 days of the study. SPSHR was given 1.5% taurine in the drinking water (n = 8), a taurine free diet (n = 8) or normal chow (n = 8). A final control group (n = 6) was not given high salt diets. High salt diets caused an acceleration in the development of hypertension in all groups. Taurine supplementation reduced ventricular hypertrophy and decreased urinary excretion of protein and creatinine. The taurine free diet did not alter serum or urinary excretion of taurine, but did result in elevated urinary nitrogen excretion, increased serum cholesterol levels, and impaired performance in a spatial learning task. Alterations in dietary taurine intake did not alter urinary or serum electrolytes (Na+, K+), but taurine supplementation did attenuate a rise in serum calcium seen with the high salt diets. Urinary excretion (μg/24 h) of epinephrine and dopamine was significantly reduced in SPSHR given 1% NaCl in the diet, but this effect was not seen in SPSHR on taurine free or supplemented diets. Taurine supplementation showed cardioprotective and renoprotective effects in SPSHR given high salt diets. Received April 12, 1999/Accepted September 13, 1999  相似文献   

10.
The effect of chronic converting enzyme inhibition with enalapril on the PRA, PRL and plasma aldosterone responses to metoclopramide was studied in 10 patients with mild to moderate essential hypertension. Enalapril reduced supine blood pressure and increased heart rate significantly. PRA and urinary sodium excretion rose significantly. PRA levels did not change after metoclopramide neither during placebo nor during enalapril. The aldosterone response to metoclopramide was not altered by enalapril, indicating that this response is independent of the renin-angiotensin system. The PRL response to metoclopramide was considerably enhanced after 4 weeks of treatment with enalapril. It is proposed that enalapril, by decreasing the formation of angiotensin II, increases the prolactin reserve.  相似文献   

11.
High-salt diets elevate circulating Na+ pump inhibitors, vascular resistance, and blood pressure. Ouabain induces a form of hypertension mediated via the alpha2-Na+ pump isoform and the calcium influx mode of the vascular sodium calcium exchanger (NCX). Whereas elevated levels of an endogenous ouabain (EO) and NCX have been implicated in salt-sensitive hypertension, acute changes in sodium balance do not affect plasma EO. This study investigated the impact of longer-term alterations in sodium balance on the circulating levels and renal clearance of EO in normal humans. Thirteen normal men consumed a normal diet, high-salt diet, and hydrochlorothiazide (HCTZ), each for 5-day periods to alter sodium balance. EO and other humoral and urinary variables were determined daily. On a normal diet, urinary sodium excretion (140 +/- 16 meq/day), plasma EO (0.43 +/- 0.08 nmol/l) and urinary EO excretion (1.04 +/- 0.13 nmol/day) were at steady state. On the 3rd day of a high-salt diet, urine sodium excretion (315 +/- 28 meq/day), plasma EO (5.8 +/- 2.2 nmol/l), and the urinary EO excretion (1.69 +/- 0.27 nmol/day) were significantly increased, while plasma renin activity and aldosterone levels were suppressed. The salt-evoked increase in plasma EO was greater in older individuals, in subjects whose baseline circulating EO was higher, and in those with low renal clearance. During HCTZ, body weight decreased and plasma renin activity, aldosterone, and EO (1.71 +/- 0.77 nmol/l) rose, while urinary EO excretion remained within the normal range (1.44 +/- 0.31 nmol/day). Blood pressure fell in one subject during HCTZ. HPLC of the plasma extracts showed one primary peak of EO immunoreactivity with a retention time equivalent to ouabain. High-salt diets and HCTZ raise plasma EO by stimulating EO secretion, and a J-shaped curve relates sodium balance and EO in healthy men. Under normal dietary conditions, approximately 98% of the filtered load of EO is reabsorbed by the kidney, and differences in the circulating levels of EO are strongly influenced by secretion and urinary excretion of EO. The dramatic impact of high-salt diets on plasma EO is consistent with its proposed role as a humoral vasoconstrictor that links salt intake with vascular function in hypertension.  相似文献   

12.
J R Sowers  F W Beck  N Stern 《Life sciences》1983,33(25):2489-2495
18-Hydroxycorticosterone (18-OHB) is a precursor of aldosterone and is the only corticosteroid, other than aldosterone, that is synthesized predominantly in the zona glomerulosa. Administration of the dopamine antagonist, metoclopramide results in parallel rises in plasma 18-OHB and aldosterone levels without affecting the plasma levels of other aldosterone precursors. However, 18-OHB is a product of the zona fasciculata as well as the glomerulosa. Thus, it is possible that metoclopramide may stimulate zona fasciculata secretion of 18-OHB. In order to more selectively examine dopaminergic regulation of zona glomerulosa secretion of 18-OHB we have examined the effect of glucocorticoid suppression of the fasciculata on the 18-OHB and aldosterone responses to metoclopramide, 10 mg iv in 6 normal volunteers. Dexamethasone, 2 mg every 6 hours for 5 days, suppressed basal levels of cortisol, corticosterone, 18-OHB and aldosterone. Dexamethasone treatment had no effect on basal levels of PRA or PRA responses to metoclopramide. The 18-OHB and aldosterone responses to metoclopramide were enhanced (p less than .05) by dexamethasone suppression. The results suggest that dopaminergic mechanisms selectively suppress glomerulosa production of 18-OHB. Endogenous ACTH may inhibit zona glomerulosa production of 18-OHB and aldosterone in response to the dopamine antagonist, metoclopramide.  相似文献   

13.
To investigate whether dopamine plays a role in the regulation of aldosterone secretion during long-term blockade of the renin-angiotensin system, we studied the effect of metoclopramide, a competitive antagonist of dopamine, in 6 patients with essential hypertension chronically treated with the angiotensin converting enzyme inhibitor enalapril. All but one of these patients received a diuretic in addition to enalapril. Six hours after the daily morning dose of enalapril (10-40 mg p.o.) a 10 mg bolus dose of metoclopramide was injected intravenously. In one patient a hypotensive episode developed following metoclopramide administration. In the 5 other patients plasma aldosterone significantly rose within 30 min after metoclopramide from 51 +/- 8.7 to 128.2 +/- 29.2 pg/ml. This metoclopramide-induced release of aldosterone occurred in the absence of concomitant changes in circulating angiotensin 11, potassium and ACTH levels. Metoclopramide given during chronic blockade of the renin-angiotensin system caused anxiety and agitation in 2 patients. The increase in plasma aldosterone following competitive dopamine blockade in the face of chronic angiotensin converting enzyme inhibition, unchanged plasma potassium and ACTH levels strongly suggests that in hypertensive patients, dopamine exerts a direct inhibitory effect on aldosterone secretion.  相似文献   

14.

Background

The incidence of Hypertension as a major cardiovascular threat is increasing. The best known diet for hypertensives is 'no added salt diet'. In this study we evaluated the effect of 'no added salt diet' on a hypertensive population with high dietary sodium intake by measuring 24 hour urinary sodium excretion.

Methods

In this single center randomized study 80 patients (60 cases and 20 controls) not on any drug therapy for hypertension with mild to moderate hypertension were enrolled. 24 hour holter monitoring of BP and 24 hour urinary sodium excretion were measured before and after 6 weeks of 'no added salt diet'.

Results

There was no statistically significant difference between age, weight, sex, Hyperlipidemia, family history of hypertension, mean systolic and diastolic BP during the day and at night and mean urinary sodium excretion in 24 hour urine of case and control groups. Seventy eight percent of all patients had moderate to high salt intake. After 6 week of 'no added salt diet' systolic and diastolic BP significantly decreased during the day (mean decrease: 12.1/6.8 mmhg) and at night (mean decrease: 11.1/5.9 mmhg) which is statistically significant in comparison to control group (P 0.001 and 0.01). Urinary sodium excretion of 24 hour urine decreased by 37.1 meq/d ± 39,67 mg/dl in case group which is statistically significant in comparison to control group (p: 0.001). Only 36% of the patients, after no added salt diet, reached the pretreatment goal of 24 hour urinary sodium excretion of below 100 meq/dl (P:0.001).

Conclusion

Despite modest effect on dietary sodium restriction, no added salt diet significantly decreased systolic and diastolic BP and so it should be advised to every hypertensive patient.

Trial Registration

Clinicaltrial.govnumber NCT00491881  相似文献   

15.
Baroreflex control of heart rate was studied in inbred salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) Dahl rats that were subjected to chronic dietary sodium chloride loading (for 4 weeks) either in youth or only in adulthood, i.e. from the age of 4 or 12 weeks. Using phenylephrine administration to pentobarbital-anesthetized male rats we have demonstrated the decreased baroreflex sensitivity (lower slope for reflex bradycardia) in young prehypertensive SS/Jr rats fed a low-salt diet as compared to age-matched SR/Jr animals. High salt intake further suppressed baroreflex sensitivity in young SS/Jr but not in SR/Jr rats. Baroreflex sensitivity decreased with age in SR/Jr rats, whereas it increased in SS/Jr rats fed a low-salt diet. Thus at the age of 16 weeks baroreflex sensitivity was much higher in SS/Jr than in SR/Jr animals. High salt intake lowered baroreflex sensitivity even in adult SS/Jr rats without affecting it in adult SR/Jr rats. Nevertheless, baroreflex sensitivity was significantly lower in young SS/Jr rats with a severe salt hypertension than in adult ones with a moderate blood pressure elevation. It is concluded that the alterations of baroreflex sensitivity in young inbred SS/Jr rats (including the response to high salt intake) are similar to those described earlier for outbred salt-sensitive Dahl rats. We have, however, disclosed contrasting age-dependent changes of baroreflex sensitivity in both inbred substrains of Dahl rats.  相似文献   

16.
F W Beck  J R Sowers  D Sicca  B G Welch 《Life sciences》1985,36(25):2435-2444
This study evaluates dopaminergic regulation of aldosterone secretion in 6 patients with high spinal cord transections. Administration of the dopamine antagonist metoclopramide resulted in a marked rise in plasma aldosterone and 18-hydroxycorticosterone levels in 12 normal individuals, but no change in plasma levels of these zona glomerulosa corticosteroid products in spinal cord patients. Spinal cord transected patients also did not have the rise in plasma renin activity that was observed in normals following metoclopramide administration. Basal levels of aldosterone, 18 hydroxycorticosterone, corticosterone and renin activity as well as the aldosterone responses to graded dose infusion of adrenocorticotropin were similar in the spinal cord patients and the normals. These data suggest that dopaminergic regulation of adrenal zona glomerulosa corticosteroid and renal renin secretion is absent in patients with high spinal cord transections, suggesting that intact neural pathways from the central nervous system are necessary for metoclopramide stimulation of aldosterone and renin secretion in men. Since basal plasma aldosterone levels were normal in spinal cord transected patients, it appears that the absence of dopaminergic control does not result in elevated secretion.  相似文献   

17.
F Skrabal  P Kotanko  F C Luft 《Life sciences》1989,45(22):2061-2076
A high salt diet leads to up-regulation of alpha-2 adrenoceptors and down-regulation of beta-2 adrenoceptors in normotensive subjects. Although the increase in blood pressure with a high salt diet is not related to the magnitude of the alpha-2 or beta-2 adrenoceptor changes alone, it is related to the increase in the ratio of the receptor changes (operative alpha/beta adrenoceptor ratio). An increase in the operative alpha/beta adrenoceptor ratio with a high salt intake results in vasoconstriction and reduced vasodilatation at resistance vessels, as well as increased renal proximal tubular sodium reabsorption. An influence of heredity on this relationship is supported by four lines of evidence: 1) salt-sensitivity of blood pressure occurs predominantly in subjects with a family history of hypertension; 2) studies in twin children document the influence of genetic variance on salt-sensitivity of blood pressure; 3) subjects with a family history of hypertension have a significantly lower salivary sodium concentration and an altered urinary sodium excretion after salt loading compared to subjects with no such history; 4) salt-sensitivity of blood pressure may be associated with specific genetic markers. On the basis of these observations, we propose the hypothesis that enhanced inverse alpha-beta-adrenoceptor regulation in response to a high salt intake may be responsible for salt sensitivity in the normal population, and may contribute to the development of essential hypertension in susceptible individuals. This alteration is likely to be genetically mediated.  相似文献   

18.
Aldosterone plays a crucial role in controlling mineral balance in our body. The mechanism of aldosterone has been reported to elevate renal Na+ reabsorption by stimulating expression of epithelial Na+ channel (ENaC) and also activate an ENaC-regulating protein kinase, serum and glucocorticoid-regulated kinase 1 (SGK1). However, it is unknown whether aldosterone shows its stimulatory action on ENaC and SGK1 under an abnormal, salt-sensitive hypertensive condition. To clarify this point, we studied how aldosterone regulates expression of ENaC and SGK1 in Dahl salt-sensitive (DS) rat that shows hypertension with high salt diet. RNA and protein were extracted from the kidney 6 h after application of aldosterone (1.5 mg/kg body weight) subcutaneously injected into adrenalectomized DS and Dahl salt-resistant (DR) rats. Aldosterone decreased mRNA expression of beta- and gamma-ENaC in DS rat unlike DR rat, while aldosterone increased alpha-ENaC mRNA expression in DS rat similar to DR rat. Further, we found that aldosterone elevated SGK1 expression in DR rat, but not in DS rat. These observations indicate that ENaC and SGK1 are abnormally regulated by aldosterone in salt-sensitive hypertensive rats, suggesting that disturbance of the aldosterone regulation would be one of factors causing salt-sensitive hypertension.  相似文献   

19.
NAD(P)H oxidase has been shown to be important in?the development of salt-sensitive hypertension. Here, we show that the expression of a subunit of NAD(P)H oxidase, p67(phox), was increased in response to a high-salt diet in the outer renal medulla of the Dahl salt-sensitive (SS) rat, an animal model for human salt-sensitive hypertension. The higher expression of p67(phox), not the other subunits observed, was associated with higher NAD(P)H oxidase activity and salt sensitivity in SS rats compared with a salt-resistant strain. Genetic mutations of the SS allele of p67(phox) were found in the promoter region and contributed to higher promoter activity than that of the salt-resistant strain. To verify the importance of p67(phox), we disrupted p67(phox) in SS rats using zinc-finger nucleases. These rats exhibited a significant reduction of salt-sensitive hypertension and renal medullary oxidative stress and injury. p67(phox) could represent a target for salt-sensitive hypertension therapy.  相似文献   

20.
Excessive salt intake is known to preferentially increase blood pressure (BP) and promote kidney damage in young, salt-sensitive hypertensive human and animal models. We have suggested that mineralocorticoid receptor (MR) activation plays a major role in kidney injury in young rats. BP and urinary protein were compared in young (3-wk-old) and adult (10-wk-old) uninephrectomized (UNx) Sprague-Dawley rats fed a high (8.0%)-salt diet for 4 wk. The effects of the MR blocker eplerenone on BP and renal injury were examined in the high-salt diet-fed young UNx rats. Renal expression of renin-angiotensin-aldosterone (RAA) system components and of inflammatory and oxidative stress markers was also measured. The effects of the angiotensin receptor blocker olmesartan with or without low-dose aldosterone infusion, the aldosterone synthase inhibitor FAD286, and the antioxidant tempol were also studied. Excessive salt intake induced greater hypertension and proteinuria in young rats than in adult rats. The kidneys of young salt-loaded rats showed marked histological injury, overexpression of RAA system components, and an increase in inflammatory and oxidative stress markers. These changes were markedly ameliorated by eplerenone treatment. Olmesartan also ameliorated salt-induced renal injury but failed to do so when combined with low-dose aldosterone infusion. FAD286 and tempol also markedly reduced urinary protein. UNx rats exposed to excessive salt at a young age showed severe hypertension and renal injury, likely primarily due to MR activation and secondarily due to angiotensin receptor activation, which may be mediated by inflammation and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号