首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of excitation of group Ia afferents, evoked by stimulation of a mixed nerve, on the firing pattern of voluntarily activated single motor units of an antagonist muscle (biceps femoris, triceps surae, and tibialis anterior muscles) was studied. Poststimulus histograms were constructed for rhythmic sequences of motor unit potentials recorded by needle electrodes and the duration of interspike intervals was analyzed. Reciprocal inhibition and other effects accompanying nerve stimulation were discovered in the motoneurons of all three muscles. Distinguishing features of the manifestation of reciprocal inhibition in a discharging motoneuron were investigated; the effect was shown to depend on the time of occurrence of the inhibitory action in the interspike interval.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 626–636, November–December, 1978.  相似文献   

2.
Single unit activity in the supramammillary, mammillary, and anterior hypothalamic areas in response to acoustic, photic, and sciatic nerve stimulation was recorded in cats anesthetized with chloralose and immobilized with succinylcholine. In response to sensory stimulation the spontaneous firing rate was increased or decreased, and silent neurons were activated. Evoked potentials of the silent neurons had the shortest latent period to acoustic and somatosensory stimulation (15 msec), and rather longer to photic stimulation (30 msec); in some cases their latent period was 200 msec. Histograms of interspike interval distribution showed a maximum for intervals of up to 50 msec. Histograms of spike distribution relative to the beginning of stimulation showed maximal density between 100 and 200 msec. A high degree of convergence of excitation was found on units of the anterior as well as the posterior hypothalamus. Unit responses in the hypothalamus to sensory stimuli of all three modalities are regarded as being of secondary, nonspecific type.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 592–598, November–December, 1971.  相似文献   

3.
Experiments on cats using extra- and intracellular recording methods showed that stimulation of the motor cortex of both hemispheres leads to considerable modulation of responses to stimulation of cutaneous and muscular lower limb afferents in spinal ventral horn interneurons in segments L6, 7. Three types of conditioning corticofugal effect were observed: facilitation, inhibition, and facilitation followed by inhibition (biphasic effect), and inhibitory effects predominated. The duration of facilitation of responses did not exceed 30–40 msec. The characteristics of the time course of inhibition varied: in some cases it began with relatively short intervals (8–15 msec), in other cases with an interval of 30–40 msec; its duration was 125–500 msec, or sometimes more. The effect of cortical stimulation on responses to stimulation of various afferent inputs of the same interneuron was shown to differ. The character of the conditioning corticofugal effect correlated with the latent period of segmental responses: facilitation was observed only in responses with a relatively short latent period (under 5 msec); responses with a longer latent period were mainly inhibited. The type of cortical effect also depended on the function performed by the activated afferent input. It is suggested that differential descending control of segmental polysynaptic responses recorded in ventral horn interneurons with wide convergence of afferent influences takes place in the initial stages of the reflex are. The mechanism of this control is discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neiorofizologiya, Vol. 14, No. 6, pp. 563–571, November–December, 1982.  相似文献   

4.
The H-reflex was evoked after producing regular unit firing in the flexor carpi ulnaris set up by moderate voluntary isometric muscular contraction. The firing index was used to quantify the effectiveness of the monosynaptic afferent signal traveling to the firing motoneuron. An analysis was made of the 3.3–16.0 spikes/sec firing range characteristic of naturally occurring muscular contraction. Effectiveness of afferent signals for motor units in the "fast" muscles under study were found to depend on motoneuronal background firing rate; the former declined as the latter rose, as previously discovered during research into "slow" soleus muscle units [2]. Afferent signals were most effective for motoneurons belonging to the "fast" muscles over the entire range of firing rates. It was found from analyzing afferent signal efficacy in relation to its point of occurrence within the interspike interval that variations in motoneuronal excitability within this interval are the reason for this relationship.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 595–600, September–October, 1987.  相似文献   

5.
A model of electrical activity of mammalian neurons, based on properties of the corresponding ionic components of the transmembrane current, is suggested. Its analysis showed that two types of firing are possible for these neurons. First, the firing pattern is determined by fast sodium and delayed potassium currents, and the period of oscillations is 74±27 msec. Second, the firing pattern is determined by calcium and Ca-activated potassium currents, and the mean duration of the interspike interval is 850±40 msec. A comprehensive examination of all ionic currents enabled two mechanisms of lengthening of the interspike interval (adaptation) of the discharge to be predicted. One is due to the fast potassium current, the other to accumulation of Ca++ ions inside the cell and the development of a Ca-activated potassium current.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 445–451, July–August, 1984.  相似文献   

6.
We investigated the effect of reciprocal inhibition upon single firing motoneurons of the human soleus and ex. carpus uln. A computer simulation of the effect of an inhibitory volley upon motoneuron impulse activity was carried out on the basis of our own data and data in the literature [3, 4]. It was shown that the duration of the silent period (SP), i.e., the period of complete cessation of firing as revealed on the peristimulus histogram (PSH), can be altered under the influence of the following factors: mean frequency of background firing (inverse dependence); variance of interspike intervals (ISIs) of background firing (inverse dependence); duration of that portion of an ISI of motoneuron activity during which an inhibitory volley causes a prolongation of the ISI (d); the maximum prolongation of the ISI (xmax). If maxmax for the briefest ISI within the range of variability in background firing. If xmax>d, the duration of the SP is similar to the duration d of the briefest ISI. To a significant degree, the parameters of the peristimulus histogram thus determine the frequency and variance of ISIs in the background firing and possibly also the individual tendency of the motoneuron to respond to an inhibitory volley by prolongation of the ISI.L. A. Orbeli Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw (Republic of Poland), Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 4, pp. 463–471, July–August, 1991.  相似文献   

7.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

8.
The behavior of motor units functioning under different conditions was investigated during the patellar reflex. The reflex was elicited during regular firing of the motor units in connection with weak sustained voluntary effort without postural change. Under these conditions the firing rate of the motor units serves as a statistical characteristic of threshold: during the maintenance of an assigned level of contraction the mean firing rate of the low-threshold motor units was higher. The greater the mean spontaneous interspike interval of the motor units, the longer the duration of their silent period after reflex muscular contraction. The duration of the silent period of single motor units in many cases exceeded the longest duration of the aggregated silent period on the electromyogram. The instant frequency (the difference between the reciprocals of the mean interspike interval and silent period) was used as a measure of inhibitory action on the motoneuron. Positive correlation was observed between the change in the instant frequency and the spontaneous firing rate of the motor units. Within the population examined, those motoneurons whose frequency was higher (low-threshold) were more inhibited. The combination of spinal factors evoking inhibition of the motoneurons after the tendon reflex and the excitatory supraspinal influences causing recruiting of the motoneurons during voluntary contraction proved more effective under the conditions investigated for the same motoneurons.  相似文献   

9.
Monosynaptic testing of excitability in firing triceps surae muscle motoneurons activated during volitional contraction was performed using a technique for recording potentials from single motor units and by producing H-reflex. Motoneuronal excitability was assessed according to level of firing index. Motoneuronal firing index decreased during transition from a low background rhythmic firing rate of less than 6 spikes/sec to one of 6–8 spikes/sec. It hardly changed with a further rise in rate to 12 spikes/sec. The dependence between firing index and spike rate are put down to changes occurring in motoneuronal excitability during the interspike interval. Findings indicate that in the low frequency range of motoneuronal firing characteristic of natural muscle contraction, discharge rate may be considered one of the factors determining excitability in the motoneuron and hence its transmission qualities.Institute of Problems in Information Transmission, Academy of Sciences of the USSR. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 210–216, March–April, 1987.  相似文献   

10.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

11.
A microelectrode investigation was made of responses of 72 physiologically identified neurons of the ventral posterior (VP) and 116 neurons of the ventral lateral (VL) thalamic nuclei to electrical stimulation of the reticular (R) thalamic nucleus. Mainly those neurons of VP and VL (73.7 and 86.2% respectively) which responded to stimulation of the first motor area and nucleus interpositus of the cerebellum responded to stimulation of R; 19.8% of VL neurons tested responded to stimulation of R by an antidromic action potential with latent period of 0.5–2.0 msec and 46.6% of neurons responded by orthodromic excitation; 23% of orthodromic responses had a latent period of 0.9–3.5 msec and 77% a latent period of 4.0–21.0 msec; 19.8% of VL neurons tested were inhibited. Among IPSPs recorded only one was monosynaptic (1.0 msec) and the rest polysynaptic. It is postulated that both R neurons are excitatory and that the inhibition which develops in VL neurons during stimulation of R are connected mainly with activation of inhibitory interneurons outside the reticular nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 477–485, September–October, 1977.  相似文献   

12.
Potentials of motor units from the trapezius and rectus femoris muscles were recorded with selective needle electrodes during weak and moderately strong voluntary isometric contraction. The sequence of interspike intervals was analyzed. Double discharges (interspike interval not exceeding 20 msec) were found most commonly during recruiting of the motor units, but also at its end. Intervals between double discharges arising while the motor units were firing at a mean rate of 10–18 spikes/sec were outside the limits of statistical scatter of the remaining intervals. Double discharges were recorded chiefly in high-threshold units. The mean interval between double discharges recorded from the trapezius muscle was significantly smaller and the double discharges appeared considerably more often than in the rectus femoris muscle. Comparison of the results of these experiments with those obtained by other workers showed correlation between the mean duration of the interval between the double discharges and the duration of delayed depolarization of the motoneuron; this fact probably plays an important role in the creation of double discharges.  相似文献   

13.
Stimulation of the infraorbital nerve at strengths 1.4–2.5 times higer than the threshold of excitation of A fibers in cats anesthetized with chloralose and pentobarbital evoked EPSPs with an amplitude up to 3.0 mV and a duration of 9–15 msec in 69% of masseter motoneurons after 1.5–3.0 msec. These EPSPs were complex and formed by summation of simpler short-latency and long-latency EPSPs. The short-latency EPSPs appeared in response to infraorbital nerve stimulation at 1.1–1.5 thresholds and had a slow rate of rise (2.5–4.5 msec, mean 3.7±0.4 msec), low amplitude (under 2.0 mV), and short duration (5–6 msec). Their latent period varied from 1.5 to 3.0 msec (mean 2.1±0.2 msec). The shortness of the latent period and its constancy during stimulation of the nerve at increasing strength, and also the character of development of facilitation and inhibition of the EPSP during high-frequency stimulation suggests that these EPSPs are monosynaptic. The slow rate of rise suggested that these EPSPs arise on distal dendrites of the motoneurons. Long-latency EPSPs appeared 7–9 msec after stimulation of the infraorbital nerve at 1.1–1.5 thresholds. Their amplitude reached 1.5–2.0 mV and their duration 7–9 msec. The long duration of the latent period combined with low ability to reproduce high-frequency stimulation (up to 30/sec) points to the polysynaptic origin of these EPSPs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 6, pp. 583–591, November–December, 1977.  相似文献   

14.
Activity of 112 neurons of the precruciate motor cortex in cats was studied during a forelimb placing reaction to tactile stimulation of its distal parts. The latent period of response of the limb to tactile stimulation was: for flexors of the elbow (biceps brachii) 30–40 msec, for the earliest reponses of cortical motor neurons about 20 msec. The biceps response was observed 5–10 msec after the end of stimulation of the cortex with a series of pulses lasting 25 msec. Two types of excitatory responses of the neurons were identified: responses of sensory type observed to each tactile stimulation of the limb and independent of the presence or absence of motion, and responses of motor type, which developed parallel with the motor response of the limb and were not observed in the absence of motion. The minimal latent period of the responses of motor type was equal to the latent period of the sensory responses to tactile stimulation (20±10 msec). Stimulation of the cortex through the recording microelectrode at the site of derivation of unit activity, which increased during active flexion of the forelimb at the elbow (11 stimuli at intervals of 2.5 msec, current not exceeding 25 µA), in 70% of cases evoked an electrical response in the flexor muscle of the elbow.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 115–123, March–April, 1977.  相似文献   

15.
Monopolar intracortical stimulation of the auditory cortex was carried out in cats immobilized with D-tubocurarine. A macroelectrode (tip diameter 100 µ) or a microelectrode (tip diameter 10–15 µ) was used for stimulation. In both cases, besides excitatory responses, primary IPSPs with latent periods of 0.4–1.2 and 1.4–6.0 msec were recorded in cortical neurons close to the point of stimulation. The first group of IPSPs are considered to be generated in response to direct stimulation of bodies or axons of inhibitory cortical neurons, i.e., monosynaptically. The amplitude of these IPSPs varied in different neurons from 3 to 15 mV, and their duration from 4 to 150 msec. Additional later inhibitory responses were superposed on many of them. Of the IPSPs generated in auditory cortical neurons in response to stimulation of geniculocortical fibers 1.5% had a latency of 0.8–1.3 msec. They also are assumed to be monosynaptic. It is concluded that the duration of synaptic delay of IPSPs in cortical neurons and spinal motoneurons is the same, namely 0.3–0.4 msec. Axons of auditory cortical inhibitory neurons may be 1.5 mm long. The velocity of impulse conduction along these axons is 1.6–2.8 m/sec. The genesis of some special features of IPSPs of cortical neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 5, pp. 458–467, September–October, 1975.  相似文献   

16.
Stimulation of the head of the caudate nucleus in cats anesthetized with chloralose and pentobarbital evoked spike responses of the Purkinje cells and other cerebellar cortical neurons in the paramedian lobes, lobulus simplex, and the tuber of the vermis. Phasic responses in the form of simple discharges (on account of activation of the neurons through mossy fibers) appeared mainly after a latent period of 5–12 and 14–20 msec; the latent period of responses consisting of complex discharges (on account of activation of Purkinje cells through climbing fibers) was 5–6, 9–22 msec, or more. Depending on the latent period, the spike responses differed in their rhythm of generation. In response to stimulation of the caudate nucleus with a frequency of 4–6/sec recruiting responses were found. An inhibitory pause was an invariable component of the tonic responses. During stimulation of the globus pallidus responses of the same types (phasic and tonic) appeared as during stimulation of the caudate nucleus, but they differed in the distribution of the neurons by latent period of spike responses. The minimal latent period was 4 msec. Recruiting also was observed during repetitive stimulation of the globus pallidus. During stimulation of the substantia nigra Pukinje cells activated by climbing fibers responded. Evoked complex discharges appeared after a stable latent period of 8.5±0.3 msec. Arguments are put forward regarding the role of the substantia nigra, the globus pallidus, nuclei of the inferior olive, and also the thalamic nuclei in the mechanism of caudato-cerebellar oligosynaptic and polysynaptic connections.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 375–384, July–August, 1978.  相似文献   

17.
High-selectivity surface electrodes were used to record the activity of single motor units of the human flexor pollicis brevis muscle and their involvement in the "silent period" and the inhibitory phase of the startle response was compared. In both these situations the degree of inhibition was greater for motor units whose action potential had a smaller amplitude. In cases of spinal inhibition, an independent direct relationship also was discovered between the intensity of the inhibitory response and the mean duration of the prestimulus interspike interval, which was completely absent during supraspinal inhibition. Correlation between the parameters of the inhibitory response of the single motor unit to influences of both types was significantly weaker than correlation between the effects of the spinal rebound phenomenon after both responses. The results suggest that involvement of spinal motoneurons in the inhibitory response is determined by interaction between several relatively independent factors.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 298–306, May–June, 1973.  相似文献   

18.
Activity of single motor units in relation to surface electromyography (EMG) was studied in 11 subjects in attention-demanding work tasks with minimal requirement of movement. In 53 verified firing periods, single motor units fired continuously from 30 s to 10 min (duration of the experiment work task) with a stable median firing rate in the range of 8–13 Hz. When the integrated surface EMG were stable, the motor units identified as a rule were continuously active with only small modulations of firing rate corresponding to low-amplitude fluctuations in surface EMG. Marked changes in the surface EMG, either sudden or gradual, were caused by recruitment or derecruitment of motor units, and not by modulations of the motor unit firing rate. Motor unit firing periods (duration 10 s-35 s) in low-level voluntary contractions (approximately 1%–5% EMGmax) performed by the same subjects showed median firing rates (7–12 Hz) similar to the observations in attention-related activation.  相似文献   

19.
The spike responses of the motor cortex neurons (area 4) associated with forelimb movement were studied in awake cats earlier trained to perform placing motor reactions. Responses produced by the same neurons were compared in two situations: 1) when a sound-click conditioning stimulus (CS) was applied in isolation; 2) when a CS followed a preliminary warning stimulus (WS), a light flash, with a 100–1000 msec delay. During the reflex initiation by combined action of the WS and CS, response components that occurred prior to the placing movement (PM) performance under isolated CS action weakened and arrived 50–150 msec later; yet, response components that appeared in the same situation simultaneously with PM onset or later remained unchanged. PM latent periods were not changed when WS was applied. The temporal interval between WS and CS was characterized by depression of neuronal activity; depression duration was determined by the interstimulus delay. It is conceivable that the described transformations in spike responses of cortical neurons occurred due to changes in the sensory direction of the animal's attention; this direction, in all cases, is a crucial factor in the formation of neuronal activity in the cortex.Translated from Neirofiziologiya, Vol. 25, No. 1, pp. 21–27, January–February, 1993.t  相似文献   

20.
Responses of 251 neurons in the anterior part of the middle suprasylvian gyrus to stimulation of primary sensory (auditory, visual, somatosensory) areas and also to acoustic, visual, and somatosensory stimuli were studied in acute experiments on cats anesthetized with chloralose (40 mg/kg) and pentobarbital (20 mg/kg). Three groups of neurons were distinguished by their responses to stimulation of the primary sensory areas: those responding by an increased firing rate (117) or by inhibition (35) and those not responding (99). Responses of 193 neurons to stimulation of the peripheral afferent systems were analyzed. Neurons of the parietal associative cortex responded more frequently to cortical stimulation than to peripheral. By the duration of the latent period of their response to cortical stimulation the neurons were divided into three groups: those with short (less than 20 msec), medium (20–30 msec), and long latent periods (over 30 msec). The first group was the largest.Kemerovo State Medical Institute. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 524–530, September–October, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号