首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methylotrophic yeast Pichia pastoris has become a powerful host for the heterologous expression of proteins. In order to provide proteins for the 'protein structure factory', a structural genomics initiative, we are working on the high-throughput expression of human proteins. Therefore, cDNAs are cloned for intracellular expression. The resulting fusion proteins carry affinity tags (6*HIS and StrepII, respectively) at the N- and C-terminus for the immunological detection and chromatographic purification of full-length proteins. Expression is controlled by the tightly regulated and highly inducible alcoholoxidase 1 (AOX1) promoter. We have developed a cultivation and induction protocol amendable to automation to increase the number of clones screened for protein expression. The screening procedure is based on a culture volume of 2 ml in a 24-well format. Lysis of the cells occurs via a chemical lysis without mechanical disruption. Using the optimized feeding and induction protocol, we are now able to screen for and identify expression clones which produce heterologous protein with a yield of 5 mg l(-1) culture volume or higher.  相似文献   

2.
Heterologous protein expression in the methylotrophic yeast Pichia pastoris   总被引:158,自引:0,他引:158  
During the past 15 years, the methylotrophic yeast Pichia pastoris has developed into a highly successful system for the production of a variety of heterologous proteins. The increasing popularity of this particular expression system can be attributed to several factors, most importantly: (1) the simplicity of techniques needed for the molecular genetic manipulation of P. pastoris and their similarity to those of Saccharomyces cerevisiae, one of the most well-characterized experimental systems in modern biology; (2) the ability of P. pastoris to produce foreign proteins at high levels, either intracellularly or extracellularly; (3) the capability of performing many eukaryotic post-translational modifications, such as glycosylation, disulfide bond formation and proteolytic processing; and (4) the availability of the expression system as a commercially available kit. In this paper, we review the P. pastoris expression system: how it was developed, how it works, and what proteins have been produced. We also describe new promoters and auxotrophic marker/host strain combinations which extend the usefulness of the system.  相似文献   

3.
4.
Gene expression in yeast: Pichia pastoris.   总被引:1,自引:0,他引:1  
Recent studies have shown the versatility and utility of the Pichia pastoris expression system. Improvements in strains have boosted the yield of proteins and peptides to the commercially feasible range. The Pichia pastoris expression system will soon be used to manufacture proteins for human clinical trials.  相似文献   

5.
利用巴斯德毕赤酵母表达外源蛋白的研究进展   总被引:5,自引:1,他引:5  
随着基因工程技术的迅速发展,已有数百种外源蛋白利用巴斯德毕赤酵母表达系统获得了成功表达。本综述了该表达系统的优点、系统的构成,外源基因转化该表达系统的方式及表达特点,阐述了该系统在生产外源蛋白上的广泛应用.并重点分析了影响外源蛋白在该表达系统中表达的因素及优化策略等。  相似文献   

6.
cDNA encoding the bound type trehalase of the European honeybee was cloned. The cDNA (3,001 bp) contained the long 5' untranslated region (UTR) of 869 bp, and the 3' UTR of 251 bp including a poly(A) tail, and the open reading frame of 1,881 bp consisting of 626 amino acid residues. The Mr of the mature enzyme comprised of 591 amino acids, excluded a signal sequence of 35 amino acid residues, was 69,177. Six peptide sequences analyzed were all found in the deduced amino acid sequence. The amino acid sequence exhibited high identity with trehalases belonging to glycoside hydrolase family 37. A putative transmembrane region similar to trehalase-2 of the silkworm was found in the C-terminal amino acid sequence. Recombinant enzyme of the trehalase was expressed in the methylotrophic yeast Pichia pastoris as host, and displayed properties identical to those of the native enzyme except for higher sugar chain contents. This is the first report of heterologous expression of insect trehalase.  相似文献   

7.
Laccases are multicopper-containing enzymes which catalyse the oxidation of phenolic and nonphenolic compounds with the concomitant reduction of molecular oxygen. In this study, a full-length cDNA coding for laccase (lac1) from Pycnoporus cinnabarinus I-937 was isolated and characterized. The corresponding open reading frame is 1557 nucleotides long and encodes a protein of 518 amino acids. The cDNA encodes a precursor protein containing a 21 amino-acid signal sequence corresponding to a putative signal peptide. The deduced amino-acid sequence of the encoded protein was similar to that of other laccase proteins, with the residues involved in copper coordination sharing the greatest extent of similarity. The cDNA encoding for laccase was placed under the control of the alcohol oxidase (Aox 1) promoter and expressed in the methylotropic yeast Pichia pastoris. The laccase leader peptide, as well as the Saccharomyces cerevisiae alpha-factor signal peptide, efficiently directed the secretion into the culture medium of laccase in an active form. Moreover, the laccase activity was directly detected in plates. The identity of the recombinant product was further confirmed by protein immunoblotting. The expected molecular mass of the mature protein is 81 kDa. However, the apparent molecular mass of the recombinant protein is 110 k Da, thus suggesting that the protein expressed in P. pastoris may be hyperglycosylated.  相似文献   

8.
The study of Carbohydrate-Active enZymes (CAZymes) associated with plant cell wall metabolism is important for elucidating the developmental mechanisms of plants and also for the utilization of plants as a biomass resource. The use of recombinant proteins is common in this context, but heterologous expression of plant proteins is particularly difficult, in part because the presence of many cysteine residues promotes denaturation, aggregation and/or protein misfolding. In this study, we evaluated two phenotypes of methylotrophic yeast Pichia pastoris as expression hosts for expansin from peach (Prunus persica (L.) Batsch, PpEXP1), which is one of the most challenging targets for heterologous expression. cDNAs encoding wild-type expansin (PpEXP1_WT) and a mutant in which all cysteine residues were replaced with serine (PpEXP1_CS) were each inserted into expression vectors, and the protein expression levels were compared. The total amount of secreted protein in PpEXP1_WT culture was approximately twice that of PpEXP1_CS. However, the amounts of recombinant expansin were 0.58 and 4.3 mg l−1, corresponding to 0.18% and 2.37% of total expressed protein, respectively. This 13-fold increase in production of the mutant in P. pastoris indicates that the replacement of cysteine residues stabilizes recombinant PpEXP1.  相似文献   

9.
A cDNA encoding for laccase was isolated from the ligninolytic fungus Trametes versicolor by RNA-PCR. The cDNA corresponds to the gene Lcc1, which encodes a laccase isoenzyme of 498 amino acid residues preceded by a 22-residue signal peptide. The Lcc1 cDNA was cloned into the vectors pMETA and pMETαA and expressed in Pichia methanolica. The laccase activity obtained with the Saccharomyces cerevisiae α-factor signal peptide was found to be twofold higher than that obtained with the native secretion signal peptide. The extracellular laccase activity in recombinants with the α-factor signal peptide was 9.79 U ml−1. The presence of 0.2 mM copper was necessary for optimal activity of laccase. The expression level was favoured by lower cultivation temperature. The identity of the recombinant protein was further confirmed by immunodetection using Western blot analysis. As expected, the molecular mass of the mature laccase was 64.0 kDa, similar to that of the native form.  相似文献   

10.
Functional expression of multidrug resistance protein 1 in Pichia pastoris.   总被引:2,自引:0,他引:2  
J Cai  R Daoud  E Georges  P Gros 《Biochemistry》2001,40(28):8307-8316
Overexpression of the multidrug resistance-associated protein (MRP1) causes multidrug resistance in cultured cells. MRP1 transports a large number of glutathione, glucuronide, and sulfate-conjugated organic anions by an ATP-dependent efflux mechanism. Six other MRP proteins exist (MRP2-7), and mutations in some of these genes cause major pathological conditions in humans. A detailed characterization of the structure and mechanism of action of these proteins requires an efficient expression system from which large amounts of active protein can be obtained. We report the expression of a recombinant MRP1 in the methylotrophic yeast Pichia pastoris. The protein is expressed in the membrane fraction of these cells, as a stable and underglycosylated 165 kDa peptide. Expression levels are very high, and 30 times superior to those seen in multidrug-resistant HeLa/MRP1 transfectants. MRP1 expressed in P. pastoris binds 8-azido[alpha-(32)P]ATP in a Mg(2+)-dependent and EDTA-sensitive fashion, which can be competed by a molar excess of ADP and ATP. Under hydrolysis conditions (at 37 degrees C), orthovanadate induces trapping of the 8-azido[alpha-(32)P]nucleotide in MRP1, which can be further modulated by known MRP1 ligands. MRP1 is also labeled by a photoactive analogue of rhodamine 123 (IAARh123) in P. pastoris/MRP1 membranes, and this can be competed by known MRP1 ligands. Finally, MRP1-positive membrane vesicles show ATP-dependent uptake of LTC(4). Thus, MRP1 expressed in P. pastoris is active and shows characteristics of MRP1 expressed in mammalian cells, including drug binding, ligand-modulated formation of the MRP1-MgADP-P(i) intermediate (ATPase activity), and ATP-dependent substrate transport. The successful expression of catalytically active and transport-competent MRP1 in P. pastoris should greatly facilitate the efficient production and isolation of the wild type or inactive mutants of MRP1, or of other MRP proteins for structural and functional characterization.  相似文献   

11.
影响外源基因在巴氏毕赤酵母中表达的因素   总被引:4,自引:0,他引:4  
李欣  郭树华 《生物技术通讯》2000,11(2):132-134,140
要在一种宿主表达系统中成功表达外源蛋白并获得较高产量,必须要较为全面地了解影响其表达的许多因素。影响外源基因在巴氏毕赤酵母中表达的因素主要包括:外源基因的特性、表达框的染色体整合位点和方式、宿主菌的甲醇利用表型、基因剂量、分泌信号、产物稳定性和翻译后修饰等。本文就这些因素进行分析,并提出一定的对策和建议。  相似文献   

12.
The xynHB gene, encoding alkaline xylanase was cloned from Bacillus pumilus by a shot-gun method. The gene was cloned into vector pHBM905A, and expressed in Pichia pastoris GS115. Xylanase-secreting transformants were selected on plates containing RBB-xylan. Enzymatic activity in the culture supernatants was up to 644?U?mL?1 and the optimal secretion time was 4 days at 25°C. SDS-PAGE showed two bands, of 32.2?kDa and 29.6?kDa, both larger than the predicted mass of 22.4?kDa based on its amino acid sequence. Zymogram analysis demonstrated that the enzyme in both bands could hydrolyze xylan. Deglycosylation by endoglycosidase H revealed that both were derived from the same protein but contain different extents of glycosylation (30 and 25%). The optimal pH and temperature of the enzyme was pH6–9 and 50°C, respectively.  相似文献   

13.
The xynHB gene, encoding alkaline xylanase was cloned from Bacillus pumilus by a shot-gun method. The gene was cloned into vector pHBM905A, and expressed in Pichia pastoris GS115. Xylanase-secreting transformants were selected on plates containing RBB-xylan. Enzymatic activity in the culture supernatants was up to 644 U mL-1 and the optimal secretion time was 4 days at 25°C. SDS-PAGE showed two bands, of 32.2 kDa and 29.6 kDa, both larger than the predicted mass of 22.4 kDa based on its amino acid sequence. Zymogram analysis demonstrated that the enzyme in both bands could hydrolyze xylan. Deglycosylation by endoglycosidase H revealed that both were derived from the same protein but contain different extents of glycosylation (30 and 25%). The optimal pH and temperature of the enzyme was pH6-9 and 50°C, respectively.  相似文献   

14.
Plant defensins are small cysteine-rich proteins that present high activity against fungi and bacteria and inhibition of insect proteases and alpha-amylases. Here, we present the expression in Pichia pastoris, purification and characterization of the recombinant Pisum sativum defensin 1(rPsd1); a pea defensin which presents four disulfide bridges and high antifungal activity. For this, we had to overcome the inefficiency of the STE13 protease. Our strategy was to clone the corresponding cDNA directly in-frame with a variant of the widely used secretion signal from the Saccharomyces cerevisiae alpha-mating factor, devoid of the STE13 proteolytic signal cleavage sequence. Using an optimized expression protocol, which included a buffered basal salt media formulation, it was possible to obtain about 63.0mg/L of 15N-labeled and unlabeled rPsd1. The recombinants were purified to homogeneity by gel filtration chromatography, followed by reversed-phase HPLC. Mass spectrometry of native and recombinant Psd1 revealed that the protein expressed heterologously was post-translationally processed to the same mature protein as the native one. Circular dichroism and nuclear magnetic resonance spectroscopy analysis indicated that the recombinant protein had the same folding when compared to native Psd1. In addition, the rPsd1 was fully active against Aspergillus niger, if compared with native Psd1. To our knowledge, this is the first heterologous expression of a fully active plant defensin in a high-yield flask.  相似文献   

15.
Recombinant protein expression in Pichia pastoris   总被引:96,自引:0,他引:96  
The methylotrophic yeast Pichia pastoris is now one of the standard tools used in molecular biology for the generation of recombinant protein. P. pastoris has demonstrated its most powerful success as a large-scale (fermentation) recombinant protein production tool. What began more than 20 years ago as a program to convert abundant methanol to a protein source for animal feed has been developed into what is today two important biological tools: a model eukaryote used in cell biology research and a recombinant protein production system. To date well over 200 heterologous proteins have been expressed in P. pastoris. Significant advances in the development of new strains and vectors, improved techniques, and the commercial availability of these tools coupled with a better understanding of the biology of Pichia species have led to this microbe's value and power in commercial and research labs alike.  相似文献   

16.
影响毕赤酵母高效表达外源蛋白的因素   总被引:5,自引:0,他引:5  
分析了毕赤酵母高效表达外源蛋白的机理以及影响毕赤酵母表达外源蛋白的作用因素。  相似文献   

17.
报道了一种筛选高表达融合蛋白HSA-IL-11的毕赤酵母转化子的免疫双膜筛选法.将生长在醋酸纤维素滤膜上的转化子进行原位诱导,再用硝酸纤维素滤膜对表达的蛋白进行原位捕捉,并经封闭过夜后使用抗HSA抗体进行免疫杂交,再用标记二抗进行显色.根据显色强弱将转化子分为强阳性、中等和阴性三类,再用抗IL-11抗体进行复筛验证.结...  相似文献   

18.
Improved expression of recombinant laccase by Pichia pastoris carrying the lcc1 cDNA isolated from Trametes versicolor was achieved by optimization of the cultivation conditions in a fermentor equipped with a methanol sensor system. The results indicated that the activity obtained in fermentor cultivations was at least 7 times higher than in shake-flask cultures. Three different strategies for fermentor cultivations were compared: A (30 degrees C, 1.0% methanol), B (20 degrees C, 1.0% methanol), and C (20 degrees C, 0.5% methanol). The laccase activity, particularly the specific activity, could be improved by decreasing the cultivation temperature. The mechanisms behind the temperature effect on the laccase activity may be ascribed to poor stability, release of more proteases from dead cells, and folding problems at higher temperature. The results showed that the methanol concentration had a marked effect on the production of active heterologous laccase. A fivefold higher volumetric laccase activity was obtained when the methanol concentration was kept at 0.5% instead of 1.0%. The detrimental effect of methanol on the production of recombinant laccase may be attributed to lower laccase stability, a higher proteolytic activity, and folding problems due to higher growth rate at 1.0% methanol.  相似文献   

19.
毕赤酵母是目前最优秀的外源蛋白表达系统之一。本文着重对重组毕赤酵母甲醇利用表型(Mut+型、MutS型和Mut-型)、基因剂量对外源蛋白高效表达的影响机理进行综述。MutS型的比生长速率和蛋白产率比Mut+型低、发酵周期长、副产物(如乙醇、乙酸等)形成速率不同。外源基因拷贝数对外源蛋白的影响主要有三种情况:(1)高基因拷贝数对外源蛋白表达水平有明显的正效应作用;(2)基因拷贝数增加反而降低了表达水平,即负效应作用;(3)重组蛋白表达与基因剂正相关,之后则表现负相关关系,这可能与外源蛋白翻译后加工有关(如二硫键形成、折叠等),而与分子伴侣共表达可促进外源蛋白的高表达。  相似文献   

20.
Previous report has shown that the expression of recombinant human consensus interferon-α mutant (cIFN) in Pichia pastoris in bioreactor is limited with respect to the incorrectly folded cIFN with incomplete disulfide bond, which lead to the degradation and aggregation of cIFN. In this study, the origin of incorrectly folded cIFN is firstly studied. Fed-batch fermentation in bioreactor shows that the incorrectly folded cIFN is formed intramolecularly and secreted to the extracellular environment. Further chemostat cultures indicate that the specific growth rate is the critical factor for the production of incorrect cIFN. In addition, cell shows reduced expression level of cIFN at high specific growth rate. We also demonstrate that the incorrectly folded cIFN could form aggregates intracellularly and these aggregates are non-covalent forms. Taken together, these results suggest that the efficient heterologous expression of cIFN is limited by high cell growth that is unique from expression limitations seen for soluble proteins. A balance has to be found between the increase for high efficient expression of heterologous proteins and requirement of the high cell growth during the expression of recombinant proteins in P. pastoris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号