首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular analysis of spv virulence genes of the salmonella virulence plasmids   总被引:23,自引:2,他引:21  
Genes on an 8 kb region common to the virulence plasmids of several serovars of Salmonella are sufficient to replace the entire plasmid in enabling systemic infection in animal models. This virulence region encompasses five genes which previously have been designated with different names from each investigating laboratory. A common nomenclature has been devised for the five genes, i.e. spv for s almonella p lasmid v irulence. The first gene, spvR, encodes a positive activator for the following four genes, spvABCD. DNA sequence analysis of the spv genes from Salmonella typhimurium. Salmonella dublin, and Salmonella choleraesuis demonstrated extremely high conservation of the DNA and amino acid sequences. The spv genes are induced at stationary phase and in carbon-poor media, and optimal expression is dependent on the katF locus. The cirulence functions of the spv genes are not known, but these genes may increase the growth rate of salmonellae in host cells and affect the interaction of salmonellae with the host immune system.  相似文献   

2.
Nine strains of Aeromonas hydrophila isolated from diseased fish or soft-shelled tortoise were tested for the presence of three virulence genes including the genes encoding aerolysin,hemolysin,and extracellular serine protease (i.e.,aerA,hlyA,and ahpA,respectively).These genes were investigated using polymerase chain reaction (PCR)with specific primers for each gene.And the pathogenicities to Carrassius auratus ibebio of these strains were also assayed.PCR results demonstrated that the distribution patterns of aerA,hlyA,and ahpA were different in these strains.6/9 of A.hydrophila strains were aer A positive,8/9 of strains hly A positive,7/9 of strains ahp A positive,respectively.However,the assay for pathogenesis showed that two strains (A.hydrophila XS91-4-1 and C2)were strong virulent,two strains (A.hydrophila ST78-3-3 and 58-20-9)avirulent and the rest middle virulent was to the fish.In conclusion,there are significant correlation between the distribution pattern of the three virulence genes and the pathogenicity to Carrassius auratus ibebio.All strong virulent A.hydrophila strains were aerA+hlyA+ahpA+genotype,and all aerA+hlyA+ahpA+strains were virulent.Strains with the genotype of aerA-hlyA-ahpA+have middle pathogenicity.In the present study,we found for the first time that all A.hydrophila isolated from the ahpA positive were virulent to Carrassius auratus ibebio.Additionally,there was a positive correlation between the virulence of A.hydrophila and the presence of aerA and ahpA.  相似文献   

3.
4.
In the face of rising antimicrobial resistance, there is an urgent need for the development of efficient and effective anti-infective compounds. Adaptive resistance, a reversible bacterial phenotype characterized by the ability to surmount antibiotic challenge without mutation, is triggered to cope in situ with several stressors and is very common clinically. Thus, it is important to target stress-response effectors that contribute to in vivo adaptations and associated lifestyles such as biofilm formation. Interfering with these proteins should provide a means of dismantling bacterial virulence for treating infectious diseases, in combination with conventional antibiotics.  相似文献   

5.
6.
7.
8.
9.
10.
Nine strains of Aeromonas hydrophila isolated from diseased fish or soft-shelled tortoise were tested for the presence of three virulence genes including the genes encoding aerolysin, hemolysin, and extracellular serine protease (i.e., aerA, hlyA, and ahpA, respectively). These genes were investigated using polymerase chain reaction (PCR) with specific primers for each gene. And the pathogenicities to Carrassius auratus ibebio of these strains were also assayed. PCR results demonstrated that the distribution patterns of aerA, hlyA, and ahpA were different in these strains. 6/9 of A. hydrophila strains were aerA positive, 8/9 of strains hlyA positive, 7/9 of strains ahpA positive, respectively. However, the assay for pathogenesis showed that two strains (A. hydrophila XS91-4-1 and C2) were strong virulent, two strains (A. hydrophila ST78-3-3 and 58-20-9) avirulent and the rest middle virulent was to the fish. In conclusion, there are significant correlation between the distribution pattern of the three virulence genes and the pathogenicity to Carrassius auratus ibebio. All strong virulent A. hydrophila strains were aerA + hlyA + ahpA + genotype, and all aerA + hlyA + ahpA + strains were virulent. Strains with the genotype of aerA hlyA ahpA + have middle pathogenicity. In the present study, we found for the first time that all A. hydrophila isolated from the ahpA positive were virulent to Carrassius auratus ibebio. Additionally, there was a positive correlation between the virulence of A. hydrophila and the presence of aerA and ahpA. __________ Translated from Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(1): 82–85 [译自: 中山大学学报 (自然科学版)]  相似文献   

11.
12.
13.
14.
Buckling A  Brockhurst MA 《Heredity》2008,100(5):484-488
Social interactions between conspecific parasites are partly dependent on the relatedness of interacting parasites (kin selection), which, in turn, is predicted to affect the extent of damage they cause their hosts (virulence). High relatedness is generally assumed to favour less competitive interactions, but the relationship between relatedness and virulence is crucially dependent on the social behaviour in question. Here, we discuss the rather limited body of experimental work that addresses how kin-selected social behaviours affect virulence. First, if prudent use of host resources (a form of cooperation) maximizes the transmission success of the parasite population, decreased relatedness is predicted to result in increased host exploitation and virulence. Experimental support for this well-established theoretical result is surprisingly limited. Second, if parasite within-host growth rate is a positive function of cooperation (that is, when individuals need to donate public goods, such as extracellular enzymes), virulence is predicted to increase with increasing relatedness. The limited studies testing this hypothesis are broadly consistent with this prediction. Finally, there is some empirical evidence supporting theory that suggests that spiteful behaviours are maximized at intermediate degrees of relatedness, which, in turn, leads to minimal virulence because of the reduced growth rate of the infecting population. We highlight the need for further thorough experimentation on the role of kin selection in the evolution of virulence and identify additional biological complexities to these simple frameworks.  相似文献   

15.
Infections that consist of multiple parasite strains or species are common in the wild and are a major public health concern. Theory suggests that these infections have a key influence on the evolution of infectious diseases and, more specifically, on virulence evolution. However, we still lack an overall vision of the empirical support for these predictions. We argue that within‐host interactions between parasites largely determine how virulence evolves and that experimental data support model predictions. Then, we explore the main limitation of the experimental study of such ‘mixed infections’, which is that it draws conclusions on evolutionary outcomes from studies conducted at the individual level. We also discuss differences between coinfections caused by different strains of the same species or by different species. Overall, we argue that it is possible to make sense out of the complexity inherent to multiple infections and that experimental evolution settings may provide the best opportunity to further our understanding of virulence evolution.  相似文献   

16.
The evolution of parasite virulence is thought to involve a trade‐off between parasite reproductive rate and the effect of increasing the number of propagules on host survivorship. Such a trade‐off should lead to selection for an intermediate level of within‐host reproduction (λ). Here I consider the effects of parasite propagule number on selection affecting λ when (i) the effect of each propagule is independent of propagule number, and (ii) when the effect of each propagule changes as a function of propagule number. Virulence evolves in these models as a correlated response to selection on λ. If each propagule has the same effect (s) as all previous propagules, the survivorship of infected hosts is reduced by more than 60% at equilibrium, independent of the value of s. If, instead, each propagule has a more negative effect on host survivorship than previous propagules, host survivorship at equilibrium is expected to increase as the effect becomes more pronounced. These results are directly parallel to results derived for population mean fitness at mutation‐selection balance; and they suggest that high virulence should be associated with parasites for which the effect of adding propagules either remains constant or diminishes with propagule number.  相似文献   

17.
18.
The ecology of virulence   总被引:2,自引:0,他引:2  
Lively CM 《Ecology letters》2006,9(10):1089-1095
Theoretical work has shown that parasites should evolve intermediate levels of virulence. Less attention has been given to the ecology of virulence. Here I explore population-dynamic models of infection in an annual host. The infection does not kill the host; but it can decrease the number of offspring produced by the host, and the magnitude of this effect depends on host population size. Hence, 'virulence' is density dependent, and is defined here as the difference in birth rates between uninfected and infected hosts, divided by the birth rate of uninfected hosts. The results suggest that infection can be highly virulent at the host's equilibrium density, even though the parasite has no effect on the host's intrinsic birth rate. The results also suggest that parasites may help to stabilize host population dynamics. In general, the impact of infection may be underestimated in natural populations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号