首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Transforming growth factor (TGF)-beta-dependent apoptosis is important in the elimination of damaged or abnormal cells from normal tissues in vivo. Previously, we have shown that TGF-beta inhibits the growth of rat intestinal epithelial (RIE)-1 cells. However, RIE-1 cells are relatively resistant to TGF-beta-induced apoptosis due to a low endogenous Smad3-to-Akt ratio. Overexpression of Smad3 sensitizes RIE-1 cells (RIE-1/Smad3) to TGF-beta-induced apoptosis by altering the Smad3-to-Akt ratio in favor of apoptosis. In this study, we utilized a genomic approach to identify potential downstream target genes that are regulated by TGF-beta/Smad3. Total RNA samples were analyzed using Affymetrix oligonucleotide microarrays. We found that TGF-beta regulated 518 probe sets corresponding to its target genes. Interestingly, among the known apoptotic genes included in the microarray analyses, only caspase-3 was induced, which was confirmed by real-time RT-PCR. Furthermore, TGF-beta activated caspase-3 through protein cleavage. Upstream of caspase-3, TGF-beta induced mitochondrial depolarization, cytochrome c release, and cleavage of caspase-9, which suggests that the intrinsic apoptotic pathway mediates TGF-beta-induced apoptosis in RIE-1/Smad3 cells.  相似文献   

3.
4.
Both prolactin (PRL) and TGF-beta regulate cell survival in mammary epithelial cells, but their mechanisms of interactions are not known. In primary mammary epithelial cells and the HC11 mouse mammary epithelial cell line, PRL prevented TGF-beta-induced apoptosis, as measured by terminal deoxynucleotidyltransferase dUTP nick-end labeling staining and caspase-3 activation. This effect depended on phosphatidyl inositol triphosphate kinase (PI3K). PI3K activates a downstream serine/threonine kinase, Akt; therefore, we investigated the role of Akt in the interaction between PRL and TGF-beta signaling. Akt activity was inhibited by TGF-beta over a 20- to 60-min time course. In TGF-beta-treated cells, PRL disinhibited Akt in a PI3K-dependent manner. Expression of dominant negative Akt blocked the protective effect of PRL in TGF-beta-induced apoptosis. Transgenic mice overexpressing a dominant-negative TGF-beta type II receptor (DNIIR) in the mammary epithelium undergo hyperplastic alveolar development, and this effect was PRL dependent. Involution in response to teat sealing was slowed by overexpression of DNIIR; furthermore, Akt and forkhead phosphorylation increased in the sealed mammary glands of DNIIR mice. Thus, Akt appears to be an essential component of the interaction between PRL and TGF-beta signaling in mammary epithelial cells both in vitro and in vivo.  相似文献   

5.
6.
7.
8.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.  相似文献   

9.
In normal epithelial cells, transforming growth factor-beta (TGF-beta) typically causes growth arrest in the G(1) phase of the cell cycle and may eventually lead to apoptosis. However, transformed cells lose these inhibitory responses and often instead show an increase in malignant character following TGF-beta treatment. In the canine kidney-derived epithelial cell line, MDCK, synergism between activation of the Raf/MAPK pathway and the resulting autocrine production of TGF-beta triggers transition from an epithelial to a mesenchymal phenotype. During this process, these cells become refractive to TGF-beta-induced cell cycle arrest and apoptosis. TGF-beta signals are primarily transduced to the nucleus through complexes of receptor-regulated Smads, Smad2 and Smad3 with the common mediator Smad, Smad4. Here we show that the transition from an epithelial to mesenchymal phenotype is accompanied by gradual down-regulation of expression of Smad3. Restoration of Smad3 to previous levels of expression restores the cell cycle arrest induced by TGF-beta without reverting the cells to an epithelial phenotype or impacting on the MAPK pathway. Regulation of apoptosis is not affected by Smad3 levels. These data attribute to Smad3 a critical role in the control of cell proliferation by TGF-beta, which is lost following an epithelial to mesenchymal transition.  相似文献   

10.
Lens epithelial cells undergo epithelial-mesenchymal transition (EMT) after injury as in cataract extraction, leading to fibrosis of the lens capsule. We have previously shown that EMT of primary lens epithelial cells in vitro depends on TGF-beta expression and more specifically, on signaling via Smad3. In this report, we suggest phosphatidylinositol 3-OH kinase (PI3K)/Akt signaling is also necessary for TGF-beta-induced EMT in lens epithelial cells by showing that LY294002, an inhibitor of the p110 catalytic subunit of PI3K, blocked the expression of alpha-smooth muscle actin (alpha-SMA) and morphological changes. We also identify Snail as an effector of TGF-beta-induced EMT. Snail has been shown to be a mediator of EMT during metastasis of cancer. We show that Snail is an immediate-early response gene for TGF-beta and the proximal Snail promoter is activated by TGF-beta through the action of Smad2, 3, and 4. We show that antisense inhibition of Snail expression blocks TGF-beta-induced EMT and furthermore Akt activation. All of these findings suggest that Snail participates in TGF-beta-induced EMT by acting upstream of Akt activation.  相似文献   

11.
12.
13.
Yu L  Hébert MC  Zhang YE 《The EMBO journal》2002,21(14):3749-3759
Through the action of its membrane-bound type I receptors, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation and apoptosis. Many of the signaling responses induced by TGF-beta are mediated by Smad proteins, but certain evidence has suggested that TGF-beta can also signal independently of Smads. We found in mouse mammary epithelial (NMuMG) cells, which respond to TGF-beta treatment in multiple ways, that TGF-beta-induced activation of p38 MAP kinase is required for TGF-beta-induced apoptosis, epithelial-to-mesenchymal transition (EMT), but not growth arrest. We further demonstrated that activation of p38 is independent of Smads using a mutant type I receptor, which is incapable of activating Smads but still retains the kinase activity. This mutant receptor is sufficient to activate p38 and cause NMuMG cells to undergo apoptosis. However, it is not sufficient to induce EMT. These results indicate that TGF-beta receptor signals through multiple intracellular pathways and provide first-hand biochemical evidence for the existence of Smad-independent TGF-beta receptor signaling.  相似文献   

14.
15.
16.
Transforming growth factor-beta (TGF-beta) regulates proliferation, morphogenesis, and functional differentiation in the mammary gland and plays complex roles in mammary tumorigenesis. Here we show that the signaling mediators Smad1-Smad5 are expressed at all stages of mammary gland development. To begin to investigate which Smads mediate which TGF-beta responses, we have analyzed mammary gland development in Smad3 null mice. Smad3 null virgin females showed delayed mammary gland development. However, this phenotype was secondary to ovarian insufficiency because Smad3 null mammary epithelium developed normally in hormonally supplemented Smad3 null mice or when transplanted into wild-type hosts. Absence of Smad3 had no effect on the ability of TGF-beta to inhibit the growth of mammary epithelial cells in culture, and no compensatory changes in expression or activation of Smad2 were seen in the Smad3 null epithelium. A small but significant decrease in apoptotic cells was seen in involuting glands from Smad3 null transplants. The results suggest that epithelial Smad3 is dispensable for TGF-beta effects on proliferation and differentiation in the mammary gland, but that it contributes in a nonredundant manner to the induction of apoptosis.  相似文献   

17.
Transforming growth factors beta (TGF-beta) are known negative regulators of lung development, and excessive TGF-beta production has been noted in pulmonary hypoplasia associated with lung fibrosis. Inhibitory Smad7 was recently identified to antagonize TGF-beta family signaling by interfering with the activation of TGF-beta signal-transducing Smad complexes. To investigate whether Smad7 can regulate TGF-beta-induced inhibition of lung morphogenesis, ectopic overexpression of Smad7 was introduced into embryonic mouse lungs in culture using a recombinant adenovirus containing Smad7 cDNA. Although exogenous TGF-beta efficiently reduced epithelial lung branching morphogenesis in control virus-infected lung culture, TGF-beta-induced branching inhibition was abolished after epithelial transfer of the Smad7 gene into lungs in culture. Smad7 also prevented TGF-beta-mediated down-regulation of surfactant protein C gene expression, a marker of bronchial epithelial differentiation, in cultured embryonic lungs. Moreover, we found that Smad7 transgene expression blocked Smad2 phosphorylation induced by exogenous TGF-beta ligand in lung culture, indicating that Smad7 exerts its inhibitory effect on both lung growth and epithelial cell differentiation through modulation of TGF-beta pathway-restricted Smad activity. However, the above anti-TGF-beta signal transduction effects were not observed in cultured embryonic lungs with Smad6 adenoviral gene transfer, suggesting that Smad7 and Smad6 differentially regulate TGF-beta signaling in developing lungs. Our data therefore provide direct evidence that Smad7, but not Smad6, prevents TGF-beta-mediated inhibition of both lung branching morphogenesis and cytodifferentiation, establishing the mechanistic basis for Smad7 as a novel target to ameliorate aberrant TGF-beta signaling during lung development, injury, and repair.  相似文献   

18.
Lens epithelial cells undergo epithelial-mesenchymal transition (EMT) after injury as in cataract extraction, leading to fibrosis of the lens capsule. We have recently shown that TGF-beta-induced EMT in lens epithelial cells depends on PI3 kinase/Akt signal pathway. In this report, we suggest Smad3 is necessary for TGF-beta-induced EMT by showing that the expression of dominant-negative Smad3 blocks the expression of alpha-smooth muscle actin (alpha-SMA) and morphological changes. We also show that TGF-beta induces a biphasic change in Rho activity, and that Y27632, a selective inhibitor of Rho effector ROCK, inhibits TGF-beta-induced EMT in vitro and in vivo. We finally show that Smad3 activation and Rho signal activation is independent each other. All of these findings suggest that Rho/ROCK activation together with Smad3 is necessary for TGF-beta-induced EMT in lens epithelial cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号