首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta- and gamma-crystallins are closely related lens proteins that are members of the betagamma-crystallin superfamily, which also include many non-lens members. Although beta-crystallin is known to be a calcium-binding protein, this property has not been reported in gamma-crystallin. We have studied the calcium binding properties of gamma-crystallin, and we show that it binds 4 mol eq of calcium with a dissociation constant of 90 microm. It also binds the calcium-mimic spectral probes, terbium and Stains-all. Calcium binding does not significantly influence protein secondary and tertiary structures. We present evidence that the Greek key crystallin fold is the site for calcium ion binding in gamma-crystallin. Peptides corresponding to Greek key motif of gamma-crystallin (42 residues) and their mutants were synthesized and studied for calcium binding. These peptides adopt beta-sheet conformation and form aggregates producing beta-sandwich. Our results with peptides show that, in Greek key motif, the amino acid adjacent to the conserved aromatic corner in the "a" strand and three amino acids of the "d" strand participate in calcium binding. We suggest that the betagamma superfamily represents a novel class of calcium-binding proteins with the Greek key betagamma-crystallin fold as potential calcium-binding sites. These results are of significance in understanding the mechanism of calcium homeostasis in the lens.  相似文献   

2.
alphaA-Crystallin can function like a molecular chaperone. We recently reported that the alphaA-crystallin sequence, KFVIFLDVKHFSPEDLTVK (peptide-1, residues 70-88) by itself possesses chaperone-like (anti-aggregating) activity during a thermal denaturation assay. Based on the above data we proposed that the peptide-1 sequence was the functional site in alphaA-crystallin. In this study we investigated the specificity of peptide-1 against gamma-crystallin aggregation in the presence of H2O2 and CuSO4. Peptide-1 was able to completely protect against the oxidation-induced aggregation of gamma-crystallin. Removal of N-terminal Lys or the replacement of Lys with Asp (DFVIFLDVKHFSPEDLTVK, peptide-2) did not alter the anti-aggregation property of peptide-1. However, deletion of KF residues from the N-terminus of peptide-1 resulted in a significant loss of its anti-aggregation property. Bio-gel P-30 size-exclusion chromatography of gamma-crystallin incubated with peptide-2 under oxidative conditions revealed that a major portion of the peptide elutes in the void volume region along with gamma-crystallin, suggesting the binding of the peptide to the protein. Peptide-1 and -2 were also able to prevent the UV-induced aggregation of gamma-crystallin. These data indicate that the same amino acid sequence in alphaA-crystallin is likely to be responsible for suppressing the heat-denatured, oxidatively modified and UV-induced aggregation of proteins.  相似文献   

3.
We identified a mutation in the CRYGD gene (P23S) of the gamma-crystallin gene cluster that is associated with a polymorphic congenital cataract that occurs with frequency of approximately 0.3% in a human population. To gain insight into the molecular mechanism of the pathogenesis of gamma-crystallin isoforms, we undertook an evolutionary analysis of the available mammalian and newly obtained primate sequences of the gamma-crystallin genes. The cataract-associated serine at site 23 corresponds to the ancestral state, since it was found in CRYGD of a lower primate and all the surveyed nonprimate mammals. Crystallin proteins include two structurally similar domains, and substitutions in mammalian CRYGD protein at site 23 of the first domain were always associated with substitutions in the structurally reciprocal sites 109 and 136 of the second domain. These data suggest that the cataractogenic effect of serine at site 23 in the N-terminal domain of CRYGD may be compensated indirectly by amino acid changes in a distal domain. We also found that gene conversion was a factor in the evolution of the gamma-crystallin gene cluster throughout different mammalian clades. The high rate of gene conversion observed between the functional CRYGD gene and two primate gamma-crystallin pseudogenes (CRYGEP1 and CRYGFP1) coupled with a surprising finding of apparent negative selection in primate pseudogenes suggest a deleterious impact of recently derived pseudogenes involved in gene conversion in the gamma-crystallin gene cluster.  相似文献   

4.
5.
6.
Salim A  Bano A  Zaidi ZH 《Proteins》2003,53(2):162-173
Crystallins are recognized as one of the long-lived proteins of lens tissue that might serve as the target for several posttranslational modifications leading to cataract development. We have studied several such sites present in the human gamma-crystallins based either on PROSITE pattern search results or earlier experimental evidences. Their probabilities were examined on the basis of the database analysis of the gamma-crystallin sequences and on their specific locations in the constructed homology models. An N-glycosylation site in human gammaD-crystallin and several phosphorylation sites in all four human gamma-crystallins were predicted by the PROSITE search. Some of these sites were found to be strongly conserved in the gamma-crystallin sequences from different sources. An extensive analysis of these sites was performed to predict their probabilities as potential sites for protein modifications. Glycation studies were performed separately by attaching sugars to the human gammaB-crystallin model, and the effect of binding was analyzed. The studies showed that the major effect of alphaD-glucose (alphaD-G) and alphaD-glucose-6-phosphate (alphaD-G6P) binding was the disruption of charges not only at the surface but also within the molecule. Only a minor alteration in the distances of sulfhydryl groups of cysteines and on their positions in the three-dimensional models were observed, leading us to assume that glycation alone is not responsible for intra- and intermolecular disulfide bond formation.  相似文献   

7.
A pigment made up of a protein able to bind retinal as well as retinol is described. The molecule consists of a dimer with a molecular weight of 50,000 which binds one molecule of retinal. The binding site for retinal is a Schiff base buried in the interior of the protein. Retinol is probably bound to the protein in the same site as for retinal, although not covalently, as suggested by the absorbance spectra. The protein, extracted from honeybee retina, is involved in visual pigment metabolism, and its structure may elucidate the mechanism of the stereospecific photoisomerization of all trans-retinal to 11-cis-retinal.  相似文献   

8.
Balashov SP  Imasheva ES  Lanyi JK 《Biochemistry》2006,45(36):10998-11004
In xanthorhodopsin, a retinal protein-carotenoid complex of Salinibacter ruber, the carotenoid salinixanthin functions as a light-harvesting antenna in supplying additional excitation energy for retinal isomerization and proton transport. Another retinal protein, archaerhodopsin, has been shown to contain a carotenoid, bacterioruberin, but without an antenna function. We report here that the binding site confers a chiral geometry on salinixanthin in xanthorhodopsin and confirm that the same is true for bacterioruberin in archaerhodopsin. Cell membranes containing these rhodopsins exhibit CD spectra with sharp positive bands in the visible region where the carotenoids absorb, and in the case of xanthorhodopsin a negative band at 536 nm, as well as bands in the UV region. The carotenoid in ethanol has very weak optical activity in the visible region of the spectrum. Denaturation of the opsin upon deprotonation of the Schiff base at pH 12.5 eliminates the induced CD bands in both proteins. In one of these proteins, but not in the other, the carotenoid binding site depends entirely on the retinal. Hydrolysis of the retinal Schiff base of xanthorhodopsin with hydroxylamine eliminates the induced CD bands of salinixanthin. In contrast, hydrolysis of the Schiff base in archaerhodopsin does not abolish the CD bands of bacterioruberin. Thus, consistent with its antenna function, the carotenoid binding site interacts closely with the retinal only in xanthorhodopsin, and this interaction is the major source of the CD bands. In this protein, protonation of the counterion with a decrease in pH from 8 to 5 causes significant changes in the CD spectrum. The observed spectral features suggest that binding of salinixanthin in xanthorhodopsin involves the cyclohexenone ring of the carotenoid and its conformational heterogeneity is restricted.  相似文献   

9.
Previous studies of N,N'-dicyclohexylcarbodiimide (DCCD)-modified bacteriorhodopsin (Renthal, R. et al. (1985) Biochemistry 24, 4275-4279) used reaction conditions (detergent micelles) that are not optimal for subsequent physical studies. The present work describes new conditions for reaction of bacteriorhodopsin with DCCD in intact purple membrane sheets in the presence of 4.5% (v/v) diethylether and light. Like the detergent reaction system, the reaction is light induced, incorporates approximately 1 mol [14C]DCCD per mol bacteriorhodospin, and results in a bleached chromophore. Peptide mapping indicates that the likely site of modification in intact membranes is identical to the site in the detergent reaction system: Asp 115. The retinal chromophore of DCCD-modified purple membrane has an absorbance maximum at 390 nm and very little induced circular dichroism. The retinal is easily extracted in hexane, yielding a 3:1 ratio of all-trans to 13-cis retinal. Borohydride reduces the retinal onto the protein within the 1-71 region of the amino acid sequence. These results suggest that Asp-115 is near the retinal binding cavity of bacteriorhodopsin. When DCCD reacts with Asp 115, retinal is displaced from its binding site.  相似文献   

10.
Site of attachment of 11-cis-retinal in bovine rhodopsin   总被引:9,自引:0,他引:9  
A dipeptide containing the binding site for retinal in bovine rhodopsin has been isolated and its sequence determined. Rhodopsin containing [11-3H]retinal was prepared in chromatographically pure form, and the [3H]retinal was reductively linked to its binding site on opsin by using borane--dimethylamine. The [3H]retinylopsin in octyl glucoside was exhaustively digested with Pronase, and its peptides were separated on silica gel in chloroform/methanol/ammonia [Bownds, D. (1967) Nature (London) 216, 1178--1181] followed by silica gel thin-layer chromatography in two solvent systems. The major retinyl peptide was shown to be alanyl-N epsilon-retinyllysine by amino acid composition, 3H content, and amino acid sequence analysis. The retinyl binding site is located in the carboxyl-terminal region of rhodopsin: when rod cell disk membranes containing [3H]retinal rhodopsin were digested with thermolysin and then reacted with sodium borohydride or borane--dimethylamine, [3H]retinal was reduced onto the F2 (Mr congruent to 6000) fragment, which derives from rhodopsin's carboxyl-terminal region.  相似文献   

11.
The chromophore retinal is bound to bacteriorhodopsin via a protonated Schiff base linkage. The retinal binding site is reported to be buried in the transmembrane portion of the protein, distant from the membrane surfaces. When bound to bacteriorhodopsin, the absorption maximum of retinal is red-shifted from 366 nm to 568 nm producing a purple color. This color persists across a wide pH range. However, when the pH is raised above 12.0, the membranes become pink in color, while at pH values of 3.0 or below, a blue color is produced. The blue color can also be obtained by removing the divalent cations bound to the surface of the protein. In this study, bacteriorhodopsin was examined by circular dichroism and absorption spectroscopy to determine if protein conformational changes were associated with the color shifts. It was found that although the retinal chromophore can be completely removed by bleaching with hydroxylamine with no significant influence on the secondary structure of the protein, a change in the surface charge of bacteriorhodopsin results in measurable conformational change in the protein, which apparently affects the nature of the retinal binding site.  相似文献   

12.
13.
In order to settle a recent discussion on the secondary structure of lens crystallins, we have measured the circular dichroism (CD) spectra of alpha-, beta(H)-, and beta(L)-crystallin from 178 to 250 nm and of gamma-crystallin from 168 to 250 nm. The results were analysed by means of a newly developed algorithm that almost doubles the reliability of secondary structure prediction and that allows discrimination between alpha- and 3(10)-helical, and between extended and polyproline beta-type structure. The results indicate that the crystallins studied contain a non-negligible amount of alpha-helical structure, although at least 50% of it is in the form of single and/or distorted loops. In alpha-crystallin, which is related to the chaperones, the helical content is lower than in beta- and gamma-crystallin. In some cases, the helices may play a role in DNA binding by the crystallins.  相似文献   

14.
15.
gamma-Crystallins were isolated from the homogenate of frog eye lenses (Rana catesbeiana) by exclusion gel chromatography and further purified by cation-exchange chromatography. They were the only group of crystallins possessing free amino groups amenable to sequence analysis by Edman degradation. Comparison of the amino acid contents of the purified subfractions of gamma-crystallins indicated their close relatedness in amino acid compositions and probably sequence homology as well. The amino-terminal sequence analysis of the purified gamma-crystallin subfractions showed extensive homology between these amphibian gamma-crystallin polypeptides themselves and also those from other vertebrate species, suggesting the existence of a multigene family and their close relatedness to gamma-crystallins of other vertebrates. The sequence comparison of the gamma-crystallin polypeptides from all major classes of vertebrates has provided strong support for the divergent evolution of gamma-crystallin family.  相似文献   

16.
Deactivation of light-activated rhodopsin (metarhodopsin II) involves, after rhodopsin kinase and arrestin interactions, the hydrolysis of the covalent bond of all-trans-retinal to the apoprotein. Although the long-lived storage form metarhodopsin III is transiently formed, all-trans-retinal is eventually released from the active site. Here we address the question of whether the release results in a retinal that is freely diffusible in the lipid phase of the photoreceptor membrane. The release reaction is accompanied by an increase in intrinsic protein fluorescence (release signal), which arises from the relief of the fluorescence quenching imposed by the retinal in the active site. An analogous fluorescence decrease (uptake signal) was evoked by exogenous retinoids when they non-covalently bound to native opsin membranes. Uptake of 11-cis-retinal was faster than formation of the retinylidene linkage to the apoprotein. Endogenous all-trans-retinal released from the active site during metarhodopsin II decay did not generate the uptake signal. The data show that in addition to the retinylidene pocket (site I) there are two other retinoidbinding sites within opsin. Site II involved in the uptake signal is an entrance site, while the exit site (site III) is occupied when retinal remains bound after its release from site I. Support for a retinal channeling mechanism comes from the rhodopsin crystal structure, which unveiled two putative hydrophobic binding sites. This mechanism enables a unidirectional process for the release of photoisomerized chromophore and the uptake of newly synthesized 11-cis-retinal for the regeneration of rhodopsin.  相似文献   

17.
A Aharoni  M Ottolenghi  M Sheves 《Biochemistry》2001,40(44):13310-13319
It has previously been shown that, in mutants lacking the Lys-216 residue, protonated Schiff bases of retinal occupy noncovalently the bacteriorhodopsin (bR) binding site. Moreover, the retinal-Lys-216 covalent bond is not a prerequisite for initiating the photochemical and proton pump activity of the pigment. In the present work, various Schiff bases of aromatic polyene chromophores were incubated with bacterioopsin to give noncovalent pigments that retain the Lys-216 residue in the binding site. It was observed that the pigment's absorption was considerably red-shifted relative to the corresponding protonated Schiff bases (PSB) in solution and was sensitive to Schiff base linkage substitution. Their PSB pK(a) is considerably elevated, similarly to those of related covalently bound pigments. However, the characteristic low-pH purple to blue transition is not observed, but rather a chromophore release from the binding site takes place that is characterized by a pK(a) of approximately 6 (sensitive to the specific complex). It is suggested that, in variance with native bR, in these complexes Asp-85 is protonated and Asp-212 serves as the sole negatively charged counterion. In contrast to the bound analogues, no photocycle could be detected. It is suggested that a specific retinal-protein geometrical arrangement in the binding site is a prerequisite for achieving the selective retinal photoisomerization.  相似文献   

18.
A comparative study on the chromophore (retinal) binding sites of the opsin (R-photopsin) from chicken red-sensitive cone visual pigment (iodopsin) and that scotopsin) from bovine rod pigment (rhodopsin) was made by the aid of geometric isomers of retinal (all-trans, 13-cis, 11-cis, 9-cis, and 7-cis) and retinal analogues including fluorinated (14-F, 12-F, 10-F, and 8-F) and methylated (12-methyl) 11-cis-retinals. The stereoselectivity of R-photopsin for the retinal isomers and analogues was almost identical with that of scotopsin, indicating that the shapes of the chromophore binding sites of both opsins are similar, although the former appears to be somewhat more restricted than the latter. The rates of pigment formation from R-photopsin were considerably greater than those from scotopsin. In addition, all the iodopsin isomers and analogues were more susceptible to hydroxylamine than were the rhodopsin ones. These observations suggest that the retinal binding site of iodopsin is located near the protein surface. On the basis of the spectral properties of fluorinated analogues, a polar group in the chromophore binding site of iodopsin as well as rhodopsin was estimated to be located near the hydrogen atom at the C10 position of the retinylidene chromophore. A large difference in wavelength between the absorption maxima of iodopsin and rhodopsin was significantly reduced in the 9-cis and 7-cis pigments. On the assumption that the retinylidene chromophore is anchored rigidly at the alpha-carbon of the lysine residue and loosely at the cyclohexenyl ring, each of the two isomers would have the Schiff-base nitrogen at a position altered from that of the 11-cis pigments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In the first step of the visual transduction cascade a photoexcited rhodopsin molecule, R*ret, binds to a GDP-carrying transducin molecule, TGDP. The R*-T interaction causes the opening of the nucleotide site in T and catalyzes the GDP/GTP exchange by allowing the release of the GDP. We have studied the influences on this R*-T transitory complex of the occupancies of the nucleotide site in T and the retinal site in rhodopsin. After elimination of the GDP released from the bound transducin, the complex, named R*ret-te (ret for retinal present, e for nucleotide site empty) remains stabilized almost indefinitely in a medium whose ionic composition is close to physiological. In this complex the bound Te retains a lasting ability to interact with GDP or GTP, and R*ret remains spectroscopically in the meta-II state, by contrast with free R*ret which decays to opsin and free retinal. Hence the R*-T interaction which opens the nucleotide site in T conversely blocks the retinal site in R*ret. Upon prolonged incubation in a low-ionic-strength medium the R*ret-Tc complex dissociates partially, but the liberated Te is then unable to rebind GDP or GTP, even in the presence of R*ret, it is probably denaturated. Upon treatment of the R*ret-Te complex by a high concentration of hydroxylamine, the retinal can be removed from the rhodopsin. The Re-Te complex remains stable and the complexed transducin keeps its capacity to bind GTP. TGTP then dissociates from Re. The liberated Re loses its capacity to interact with a new transducin. These data are integrated into a discussion of the development of the cascade. We stress that affinities, i.e. dissociation equilibrium constants, are insufficient to describe the flow of reactions triggered by one R*ret molecule. It depends on a few critical rapid binding and dissociation processes, and is practically insensitive to other slow ones, hence to the values of affinities that express only the ratio of kinetics constants. The effect of the R*-T interaction on the retinal site in rhodopsin is analogous to the effect of the binding of a G-protein on the apparent affinity of a receptor for its agonist.  相似文献   

20.
Visual opsins bind 11-cis retinal at an orthosteric site to form rhodopsins but increasing evidence suggests that at least some are capable of binding an additional retinoid(s) at a separate, allosteric site(s). Microspectrophotometric measurements on isolated, dark-adapted, salamander photoreceptors indicated that the truncated retinal analog, β-ionone, partitioned into the membranes of green-sensitive rods; however, in blue-sensitive rod outer segments, there was an enhanced uptake of four or more β-ionones per rhodopsin. X-ray crystallography revealed binding of one β-ionone to bovine green-sensitive rod rhodopsin. Cocrystallization only succeeded with extremely high concentrations of β-ionone and binding did not alter the structure of rhodopsin from the inactive state. Salamander green-sensitive rod rhodopsin is also expected to bind β-ionone at sufficiently high concentrations because the binding site is present on its surface. Therefore, both blue- and green-sensitive rod rhodopsins have at least one allosteric binding site for retinoid, but β-ionone binds to the latter type of rhodopsin with low affinity and low efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号