首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of BHK cells by Sindbis virus leads to rapid inhibition of host cell protein synthesis and cytopathic effects (CPE). We have been studying these events to determine whether the expression of a specific viral gene is required and, in the present study, have focused our attention on the role of the structural proteins--the capsid protein and the two membrane glycoproteins. We tested a variety of Sindbis viruses and Sindbis virus replicons (virus particles containing an RNA that is self-replicating but with some or all of the viral structural protein genes deleted) for their abilities to inhibit host cell protein synthesis and cause CPE in infected BHK cells. Our results show that shutoff of host cell protein synthesis occurred in infected BHK cells when no viral structural proteins were synthesized and also under conditions in which the level of the viral subgenomic RNA was too low to be detected. These results support the conclusion that the early steps in viral gene expression are the ones required for the inhibition of host cell protein synthesis in BHK cells. In contrast, the Sindbis viruses and Sindbis virus replicons were clearly distinguished by the time at which CPE became evident. Viruses that synthesized high levels of the two membrane glycoproteins on the surface of the infected cells caused a rapid (12 to 16 h postinfection) appearance of CPE, and those that did not synthesize the glycoprotein spikes showed delayed (30 to 40 h) CPE.  相似文献   

2.
We analyzed a BHK cell line persistently infected with Sindbis virus for 16 months and a virus (Sin-16) cloned from these cells. Sin-16 virus was resistant to the defective interfering particles present in the original infection. We found that (i) cells infected with Sin-16 were impaired in the processing of a viral precursor glycoprotein, (ii) high-multiplicity passaging of Sin-16 gave rise to a variant that was able to generate and be inhibited by defective-interfering particles to which the original Sin-16 virus was resistant, and (iii) the persistently infected culture contained a heterogeneous mixture of defective Sindbis virus RNAs which were not packaged into extracellular particles. To determine whether these intracellular RNAs could interfere with the replication of Sin-16, we analyzed cells that were cloned from the persistently infected culture. One clone (A3) synthesized a single defective viral RNA which was lost with continued passaging in culture. Infection of A3 cells with Sin-16 showed that the presence of the defective RNA greatly enhanced cell survival and led to enrichment of this RNA. In contrast, cured cells were highly susceptible to killing by Sin-16, and survivors did not synthesize this RNA. Thus, A3 cells were not genetically altered in their response to Sin-16, but were protected from the cytopathic effects of infection by an RNA with the characteristics of a defective-interfering RNA.  相似文献   

3.
We obtained Sindbis defective-interfering particles by nine and undiluted passages of standard virus on chicken embryo fibroblasts. These particles contain a deleted 20S RNA molecule which has mRNA activity, as shown by translation in cell-free systems in vitro. In infected cells, this mRNA activity appeared to be totally inhibited except at very late times postinfection.  相似文献   

4.
Cells infected with wild-type Sindbis virus contain at least two forms of mRNA, 26S and 49S RNA. Sindbis 26S RNA (molecular weight 1.6 x 10(6)) constitutes 90% by weight of the mRNA in infected cells, and is thought to specify the structural proteins of the virus. Sindbis 49S RNA, the viral genome (molecular weight 4.3 x 10(6)), constitutes approximately 10% of the mRNA in infected cells and is thought to supply the remaining viral functions. In cells infected with ts2, a temperature-sensitive mutant of Sindbis virus, the messenger forms also include a third species of RNA with a sedimentation coefficient of 33S and an apparent molecular weight of 2.3 x 10(6). Hybridization-competition experiments showed that 90% of the base sequences in 33S RNA from these cells are also present in 26S RNA. Sindbis 33S RNA was also isolated from cells infected with wild-type virus. After reaction with formaldehyde, this species of 33S RNA appeared to be completely converted to 26S RNA. These results indicate that 33S RNA isolated from cells infected with either wild-type Sindbis or ts2 is not a unique and separate form of Sindbis RNA.  相似文献   

5.
Maximum amounts of 42S and 26S single-stranded viral RNA and viral structural proteins were synthesized in Aedes albopictus cells at 24 h after Sindbis virus infection. Thereafter, viral RNA and protein syntheses were inhibited. By 3 days postinfection, only small quantities of 42S RNA and no detectable 26S RNA or structural proteins were synthesized in infected cells. Superinfection of A. albopictus cells 3 days after Sindbis virus infection with Sindbis, Semliki Forest, Una, or Chikungunya alphavirus did not lead to the synthesis of intracellular 26S viral RNA. In contrast, infection with snowshoe hare virus, a bunyavirus, induced the synthesis of snowshoe hare virus RNA in both A. Ablpictus cells 3 days after Sindbis virus infection and previously uninfected mosquito cells. These results suggested that at 3 days after infection with Sindbis virus, mosquito cells restricted the replication of both homologous and heterologous alphaviruses but remained susceptible to infection with a bunyavirus. In superinfection experiments the the alphaviruses were differentiated on the basis of plaque morphology and the electrophoretic mobility of their intracellular 26S viral RNA species. Thus, it was shown that within 1 h after infection with eigher Sindbis or Chikungunya virus, A. albopictus cells were resistant to superinfection with Sindbis, Chikungunya, Una, and Semliki Forest viruses. Infected cultures were resistant to superinfection with the homologous virus indefinitely, but maximum resistance to superinfection with heterologous alphaviruses lasted for approximately 8 days. After that time, infected cultures supported the replication of heterologous alphaviruses to the same extent as did persistently infected cultures established months previously. However, the titer of heterologous alphavirus produced after superinfection of persistently infected cultures was 10- to 50-fold less than that produced by an equal number of previously uninfected A. albopictus cells. Only a small proportion (8 to 10%) of the cells in a persistently infected culture was capable of supporting the replication of a heterologous alphavirus.  相似文献   

6.
Defective interfering particles of Sindbis virus contain 20S RNA identical to that found in BHK cells co-infected with standard and defective virions. We have characterized these RNAs by their oligonucleotide fingerprints. Most of the oligonucleotides were identical to those found in the mRNA (26S RNA) that codes for the virion structural proteins. Three oligonucleotides found in 20S RNA were absent from the 26S RNA pattern and may represent sequences from the 5' end of the virion RNA. Previous difficulties in describing the nature of the defective virion RNA were due to the aggregated state of the RNA. Nucleocapsids obtained from standard and defective virions were essentially the same size and had about the same density, suggesting that defective particles contain more than a single molecule of 20S RNA.  相似文献   

7.
Defects in RNA and protein synthesis of seven Sindbis virus and seven Semliki Forest virus RNA-negative, temperature-sensitive mutants were studied after shift to the restrictive temperature (39 degrees C) in the middle of the growth cycle. Only one of the mutants, Ts-6 of Sindbis virus, a representative of complementation group F, was clearly unable to continue RNA synthesis at 39 degrees C, apparently due to temperature-sensitive polymerase. The defect was reversible and affected the synthesis of both 42S and 26S RNA equally, suggesting that the same polymerase component(s) is required for the synthesis of both RNA species. One of the three Sindbis virus mutants of complementation group A, Ts-4, and one RNA +/- mutant of Semliki Forest virus, ts-10, showed a polymerase defect even at the permissive temperature. Seven of the 14 RNA-negative mutants showed a preferential reduction in 26S RNA synthesis. The 26S RNA-defective mutants of Sindbis virus were from two different complementation groups, A and G, indicating that functions of two viral nonstructural proteins ("A" and "G") are required in the regulation of the synthesis of 26S RNA. Since the synthesis of 42S RNA continued, these functions of proteins A and G are not needed for the polymerization of RNA late in infection. The RNA-negative phenotype of 26S RNA-deficient mutants implies that proteins regulating the synthesis of this subgenomic RNA must have another function vital for RNA synthesis early in infection or in the assembly of functional polymerase. Several of the mutants having a specific defect in the synthesis of 26S RNA showed an accumulation of a large nonstructural precursor protein with a molecular weight of about 200,000. One even larger protein was demonstrated in both Semliki Forest virus- and Sindbis virus-infected cells which probably represents the entire nonstructural polyprotein.  相似文献   

8.
We have isolated from a single plaque a mutant of Sindbis virus characterized by an E1 glycoprotein with higher electrophoretic mobility. This higher mobility is not attributable to a different extent of glycosylation of the protein nor to an altered proteolytic maturation pathway of the polypeptide precursor, but is the result of a deletion occurring during the replication of the viral RNA. The 26S RNA (the messenger for the Sindbis structural proteins) extracted from cells infected with the mutant is about 0.75 x 10(5) daltons smaller than the 26S RNA from the parental strain. As a consequence, in cells infected with the mutant, an E1 glycoprotein is synthesized with a polypeptide chain about 70 amino acids shorter. The biological relevance of this naturally occurring deletion of the viral genome is discussed.  相似文献   

9.
The data presented in the paper demonstrate that in BHK cells infected with Sindbis virus virtually all the 42S mRNA not in nucleocapsid is associated with free polyribosomes, whereas the 26S mRNA is distributed between free and membrane-bound polyribosomes. We suggest that the 26S RNA polyribosomes are bound to the membranes through the nascent chains of the B1 protein and that a large percentage of 26S RNA polyribosomes free in the cytoplasm may be due to the small amount of rough endoplasmic reticulum in BHK cells. In addition, we found that intracellular nucleocapsid is in the nonmembrane fraction of the cytoplasm of infected cells.  相似文献   

10.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

11.
The interrelationship of viral ribonucleic acid (RNA) and protein synthesis in cells infected by Sindbis virus was investigated. When cultures were treated with puromycin early in the course of infection, the synthesis of interjacent RNA (26S) was preferentially inhibited. A similar result was obtained by shifting cells infected by one temperature-sensitive mutant defective in RNA synthesis from the permissive (29 C) to the nonpermissive (41.5 C) temperature. Under both conditions, the viral RNA produced appeared to be fully active biologically. Once underway, the synthesis of viral RNA in wild-type Sindbis infections did not require concomitant protein synthesis.  相似文献   

12.
Subgenomic mRNA of Aura alphavirus is packaged into virions.   总被引:6,自引:5,他引:1       下载免费PDF全文
Purified virions of Aura virus, a South American alphavirus related to Sindbis virus, were found to contain two RNA species, one of 12 kb and the other of 4.2 kb. Northern (RNA) blot analysis, primer extension analysis, and limited sequencing showed that the 12-kb RNA was the viral genomic RNA, whereas the 4.2-kb RNA present in virus preparations was identical to the 26S subgenomic RNA present in infected cells. The subgenomic RNA is the messenger for translation of the viral structural proteins, and its synthesis is absolutely required for replication of the virus. Although 26S RNA is present in the cytosol of all cells infected by alphaviruses, this is the first report of incorporation of the subgenomic RNA into alphavirus particles. Packaging of the Aura virus subgenomic mRNA occurred following infection of mosquito (Aedes albopictus C6/36), hamster (BHK-21), or monkey (Vero) cells. Quantitation of the amounts of genomic and subgenomic RNA both in virions and in infected cells showed that the ratio of genomic to subgenomic RNA was 3- to 10-fold higher in Aura virions than in infected cells. Thus, although the subgenomic RNA is packaged efficiently, the genomic RNA has a selective advantage during packaging. In contrast, in parallel experiments with Sindbis virus, packaging of subgenomic RNA was not detectable. We also found that subgenomic RNA was present in about threefold-greater amounts relative to genomic RNA in cells infected by Aura virus than in cells infected by Sindbis virus. Packaging of the Aura virus subgenomic RNA, but not those of other alphaviruses, suggests that Aura virus 26S RNA contains a packaging signal for incorporation into virions. The importance of the packaging of this RNA into virions in the natural history of the virus remains to be determined.  相似文献   

13.
Cell-free extracts from Krebs ascites cells and rabbit reticulocytes synthesized a variety of viral-specific proteins when programmed with several different kinds of Sindbis viral RNAs. The RNAs included purified virion RNA (42S) and two species (26S and "33S") of purified intracellular viral messenger RNAs from viral-infected BHK cells. Proteins formed in vitro were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, rate-zonal centrifugation in urea-sucrose gradients, two-dimensional tryptic peptide fingerprints, and immunoprecipitation with rabbit anti-Sindbis virus serum. The only major identifiable protein formed in vitro was viral capsid, but the relative amount of capsid produced was determined by the mRNA, the source of cell-free extract, and the components of the cell-free system. Virion RNA directed synthesis of larger-molecular-weight proteins than did intracellular viral RNAs, and some of this protein was distinct from that formed by the smaller viral RNAs. Indirect evidence is presented for in vitro synthesis of viral envelope proteins.  相似文献   

14.
15.
Polysomes were prepared from Sindbis virus-infected BHK cells. The major species of RNA in these polysomes was identified as 26S RNA (interjacent RNA) by (i) disrupting the polysomes with EDTA; (ii) treating the infected cells with puromycin; and (iii) isolating polysomes from cells infected with a temperature-sensitive mutant that does not form nucleocapsids. Small amounts of 42S RNA and 33S RNA were also found in polysomes.  相似文献   

16.
We have established a persistent infection of BHK cells with a preparation of Sindbis virus heavily enriched in defective interfering (DI) particles. The small fraction of cells that survived the initial infection grew out to form a stable population of cells [BHK(Sin-1) cells], most of which synthesized viral RNA and viral antigens. The presence of DI particles in this virus stock was required to establish this persistent state. BHK(Sin-1) cells released a small-plaque, temperature-sensitive virus (Sin-1 virus) as well as DI particles containing DI RNAs larger than those present in the original stock used to establish the persistent state. A cloned stock of Sin-1 virus, free of detectable DI particles, was able to initiate a persistent infection more quickly and with greater cell survival than the original stock of Sindbis virus containing DI particles. About 2 weeks after the Sin-1 virus-infected cells were cultured, DI RNAs arose and soon became the dominant viral RNA species produced by these cells.  相似文献   

17.
Brief treatment of Sindbis virus-infected BHK-21 or Vero cells with low concentrations of trypsin irreversibly blocked further production of progeny virions after removal of the enzyme. The inhibitory effects of the trypsin treatment could only be demonstrated in cells in which virus infection was established; optimal inhibition occurred at ca. 3 h postinfection. Production of virus structural proteins PE2, E1, and C occurred at normal levels in inhibited cells. PE2 and E1 were also transported to the cell plasma membrane during inhibition; however, PE2 was not cleaved to E2, and little capsid protein became membrane associated relative to control cells. Although trypsin treatment had no effect on Sindbis protein synthesis, the production of both 26S and 42S RNA was greatly reduced. Similar trypsin treatment of BHK cells infected with vesicular stomatitis virus had no detectable effect on the course of virus infection.  相似文献   

18.
19.
20.
Initiation sites for translation of sindbis virus 42S and 26S messenger RNAs.   总被引:21,自引:0,他引:21  
Sindbis virus 26S RNA is the principal species of virus-specific RNA found in the infected cell; it is derived from a one third segment of virion 42S RNA. When translated in cell-free extracts from mouse ascites cells or rabbit reticulocytes, 26S RNA directed the synthesis primarily of the 33,000 dalton virus capsid protein, and the protein products were in the form of free peptides rather than peptidyl-tRNA. In contrast, the polypeptides synthesized in either extract in response to Sindbis virus 42S RNA were heterogeneous, ranging in molecular weight from 33,000 to 190,000, and were largely in the form of peptidyl-tRNA. The number of independent initiation sites on the 26S and 42S RNAs was determined by analyzing a tryptic digest of reaction products labeled with yeast N-formyl-35S-methionyl-tRNAFmet. The 26S RNA appeared to contain a single initiation site, and this site could also be found in varying amounts in different preparations of 42S RNA. However, a second initiation site, distinct from that of 26S RNA, was the major site in 42S virion RNA. These results suggest that 42S virion RNA contains two potential sites for initiation of protein synthesis. Only one of these may be active, however, and it is postulated that the second site functions primarily, if not exclusively, in the subgenomic 26S RNA species. In this regard, Sindbis virus 42S RNA may represent a novel form of a eucaryotic messenger RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号