首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Corynebacterium glutamicum insertion sequence IS31831 was used to construct two artificial transposons: Tn31831 and miniTn31831. The transposition vectors were based on a gram-negative replication origin and do not replicate in coryneform bacteria. Strain Brevibacterium flavum MJ233C was mutagenized by miniTn31831 at an efficiency of 4.3 x 104 mutants per microgram DNA. Transposon insertions occurred at different locations on the chromosome and produced a variety of mutants. Auxotrophs could be recovered at a frequency of approximately 0.2%. Transposition of IS31831 derivatives led not only to simple insertion, but also to cointegrate formation (5%). No multiple insertions were observed. Chromosomal loci of B. flavum corresponding to auxotrophic and pigmentation mutants could be rescued in Escherichia coli, demonstrating that these transposable elements are useful genetic tools for studying the biology of coryneform bacteria.  相似文献   

2.
3.
Eight independently isolated unstable alleles of theOpaque2 (O2) locus were analysed genetically and at the DNA level. The whole series of mutations was isolated from a maize strain carrying a wild-typeO2 allele and the transposable elementActivator (Ac) at thewx-m7 allele. Previous work with another unstable allele of the same series has shown that it was indeed caused by the insertion of anAc element. Unexpectedly, the remaining eight mutations were not caused by the designatedAc element, but by other insertions that are structurally similar or identical to one of two different autonomous transposable elements. Six mutations were caused by the insertion of a transposable element of theEnhancer/Suppressor-Mutator (En/Spm) family. Two mutations were the result of the insertion of a transposable element of theBergamo (Bg) family. Genetic tests carried out with plants carrying the unstable mutations demonstrated that all were caused by the insertion of an autonomous transposable element.  相似文献   

4.
Insertion sequence (IS) elements are mobile genetic elements found in prokaryotes. We have identified a repetitive element from Mycoplasma pulmonis, a murine pathogen, that is similar to eubacterial IS elements. By subcloning a single strain of M. pulmonis, we isolated a variant clone in which the IS element had undergone an apparent transposition event. The nucleotide sequences of the element, designated IS 1138, and the target site into which it inserted were determined. IS1138 consists of 1288bp with 18bp perfect terminal inverted repeats. Sequence analysis of the target site before and after insertion of IS1138 identified a 3bp duplication of target DNA flanking the element. The predicted amino acids encoded by the major open reading frame of IS 1138 share significant similarity with the transposases of the IS3 family. Southern hybridization analysis indicates that repetitive sequences similar to IS 1138 are present in most, if not all, strains of M. pulmonis, but Is1138–like sequences were not detected in other mycoplasmal species.  相似文献   

5.
In the course of developing strategies to obtain a mutation in the aspartate semialdehyde dehydrogenase (asd) gene of Mycobacterium smegmatis, an efficient transposon trap was constructed which may be generally useful for the identification of transposable elements in mycobacteria. A DNA fragment containing the asd gene was replaced with an aminoglycoside phosphotransferase gene (aph) to generate a delta asd::aph allele. Attempts to replace the wild-type asd gene with the delta asd::aph allele were unsuccessful, suggesting that this deletion was lethal to the growth of M. smegmatis. The plasmid, pYUB215, which contains beta-galactosidase expressed from a mycobacteriophage promoter and delta asd::aph, was integrated into the chromosome of M. smegmatis by a homologous, single-crossover, recombination event. Visual screening for inactivation of the beta-galactosidase gene in the resulting strain allowed the isolation of a novel mycobacterial insertion element from M. smegmatis. This insertion element, which is unique to M. smegmatis, was designated IS1096 and transposes at a frequency of 7.2 x 10(-5) per cell in an apparently random fashion. IS1096 is 2,275 bp in length and contains two open reading frames which are predicted to encode proteins involved in transposition. This insertion element exhibits several characteristics that suggest it may be a useful tool for genetic analysis of mycobacteria, possibly including the study of mechanisms of pathogenesis.  相似文献   

6.
By analysis of repetitive DNA in Bordetella parapertussis, an insertion sequence element, designated IS1001, was identified. Sequence analysis revealed that IS1001 comprised 1,306 bp and contained inverted repeats at its termini. Furthermore, several open reading frames that may code for transposition functions were identified. The largest open reading frame coded for a protein comprising 406 amino acid residues and showed homology to TnpA, which is encoded by an insertion sequence element (IS1096) found in Mycobacterium smegmatis. Examination of flanking sequences revealed that insertion of IS1001 occurs preferentially in stretches of T's or A's and results in a duplication of target sequences of 6 to 8 bases. IS1001 was found in about 20 copies in 10 B. parapertussis strains analyzed. No restriction fragment length polymorphism was observed in B. parapertussis when IS1001 was used as a probe. An insertion sequence element similar or identical to IS1001 was found in B. bronchiseptica strains isolated from pigs and a rabbit. In these strains, about five copies of the IS1001-like element were present at different positions in the bacterial chromosome. Neither B. pertussis nor B. bronchiseptica strains isolated from humans and dogs contained an IS1001-like element. Therefore, IS1001 may be used as a specific probe for the detection of B. parapertussis in human clinical samples.  相似文献   

7.
A transposable element has been isolated from the entomopathogenic fungus Beauveria bassiana by trapping it in the nitrate reductase structural gene, which has been cloned from this species. The element had inserted in the first exon of the nia gene and appeared to have duplicated the sequence TA at the site of insertion. It was 3336 bp long with 30-bp imperfect, inverted, terminal repeats. The element, called hupfer, contained an open reading frame encoding a 321-amino acid protein similar to the IS630- or mariner-Tc1-like transposases, and a residual sequence of about 2 kb which was not significantly similar to any published sequence. There are fewer than five copies of this transposable element present per genome in the fungus. Received: 12 February 1997 / Accepted: 2 May 1997  相似文献   

8.
Abstract The sacB gene of Bacillus subtilis was successfully applied in various Arthrobacter, Brevibacterium, Corynebacterium and Rhodococcus strains for the isolation of transposable elements. Three different insertion sequence (IS) elements entrapped in sacB were isolated. The IS elements IS- Bl and IS- Cg isolated from Brevibacterium lactofermentum and Corynebacterium glutamicum , respectively, were found to be similar in size (1.45 kb) and generated target duplications of 8 bp. Their inverted repeats showed homology. In contrast, the IS element IS- Rf isolated from Rhodococcus fascians was only 1.3 kb long and generated a 3-bp target duplication. IS- Cg and IS- Rf were not restricted to their original host strains, and we also found strains harbouring more than one element.  相似文献   

9.
A 1.2 kb DNA sequence, flanked by a potential seven base target-site duplication, was found inserted into a TOC1 transposable element from Chlamydomonas reinhardtii. The insertion sequence, named TOC2, is a member of a family of repeated DNA sequences that is present in all the C. reinhardtii strains tested. It resembles class II transposable elements: it possesses short 14 bp imperfect terminal repeats that begin AGGAGGGT, and sub-terminal direct repeats located within 250 bp of the termini. No large open reading frames were found. The terminal bases and length of target-site duplication are important in classifying transposable elements. On this basis TOC2 does not fall readily into existing families of class II transposable elements found in plants.  相似文献   

10.
A new insertion sequence (IS), IS 1642 , was identified in a Mycobacterium avium strain isolated from a human patient. IS 1642 had a size of 1642 bp and contained a single ORF encoding a probable transposase of 503 amino acid residues homologous (79% identity) to that of IS 1549 found in Mycobacterium smegmatis . The IS 1642 included imperfect inverted repeats (5'-cctgacttttatca-3', 5'-tgataaaagtcggg-3') on its ends, and was flanked by direct repeats of variable length ranging from 5 to 161 bp. It was suggested that the IS 1642 was widely distributed in many M. avium strains of human patients, and the Southern blot profile of IS 1642 was very diverse among the strains examined. The transposition event of IS 1642 was observed by in vitro repeated passages, showing that the IS 1642 is actually a transposable element. In light of these characteristics, IS 1642 could be a new useful marker when genotyping with high discrimination is required.  相似文献   

11.
We isolated members of the retroposon family p-SINE1 in rice and found that one member contained an insertion. A 3-bp sequence at the insertion site within p-SINE1 appeared duplicated. The insertion sequence, 1536 bp in length, carried imperfect inverted repeats of about 13 bp at its termini which begin with 5-CACTA--- -3; these repeats are similar to those found in members of theEn/Spm transposable element family. These results indicate that the insertion sequence is a transposable element belonging to theEn/Spm family and is thus namedTnr3 (transposable element inrice no.3). In fact,Tnr3 carried long subterminal regions containing direct and inverted repeats of short DNA sequences of 15 bp, another characteristic of theEN/Spm family. The subterminal repeat sequences inTnr3 are, however, of two kinds, although they share homology with each other.Tnr3 and its relatives were present in multiple copies in rice. Considering the length ofTnr3, it cannot represent an autonomous type element, but is a non-autonomous element probably derived by deletion from an autonomous transposon.  相似文献   

12.
A chromosomal repeated sequence from Streptococcus thermophilus was identified as a new insertion sequence (IS), IS1191. This is the first IS element characterized in this species. This 1313 bp element has 28 bp imperfect terminal inverted repeats and is flanked by short direct repeats of 8bp. The single large open reading frame of IS1191 encodes a 391-amino-acid protein which displays homologies with transposases encoded by IS1201 from Lactobacillus helveticus (44.5% amino-acid sequence identity) and by the other ISs of the IS256 family. One of the copies of IS 1191 is inserted into a truncated iso-IS981 element. The nucleotide sequences of two truncated iso-IS981 s from S. thermophilus and the sequence of IS981 element from Lactococcus lactis share more than 99% identity. The distribution of these insertion sequences in L. lactis and S. thermophilus strains suggests that intergeneric transfers occur during co-cultures used in the manufacture of cheese.  相似文献   

13.
To develop a transposable element-based system for mutagenesis in Rhodococcus, we used the sacB gene from Bacillus subtilis to isolate a novel transposable element, IS1676, from R. erythropolis SQ1. This 1693 bp insertion sequence is bounded by imperfect (10 out of 13 bp) inverted repeats and it creates 4 bp direct repeats upon insertion. Comparison of multiple insertion sites reveals a preference for the sequence 5′-(C/T)TA(A/G)-3′ in the target site. IS1676 contains a single, large (1446 bp) open reading frame with coding potential for a protein of 482 amino acids. IS1676 may be similar to an ancestral transposable element that gave rise to repetitive sequences identified in clinical isolates of Mycobacteriumkansasii. Derivatives of IS1676 should be useful for analysis of Rhodococcus strains, for which few other genetic tools are currently available. Received: 1 April 1999 / Received revision: 6 July 1999 / Accepted: 1 August 1999  相似文献   

14.
Insertion sequences (ISs) are transposable genetic elements in bacterial genomes. IS elements are common among bacteria but are generally rare within free-living species, probably because of the negative fitness effects they have on their hosts. Conversely, ISs frequently proliferate in intracellular symbionts and pathogens that recently transitioned from a free-living lifestyle. IS elements can profoundly influence the genomic evolution of their bacterial hosts, although it is unknown why they often expand in intracellular bacteria. We designed a laboratory evolution experiment with Escherichia coli K-12 to test the hypotheses that IS elements often expand in intracellular bacteria because of relaxed natural selection due to (1) their generally small effective population sizes (N e) and thus enhanced genetic drift, and (2) their nutrient rich environment, which makes many biosynthetic genes unnecessary and thus selectively neutral territory for IS insertion. We propagated 12 populations under four experimental conditions: large N e versus small N e, and nutrient rich medium versus minimal medium. We found that relaxed selection over 4,000 generations was not sufficient to permit IS element expansion in any experimental population, thus leading us to hypothesize that IS expansion in intracellular symbionts may often be spurred by enhanced transposition rates, possibly due to environmental stress, coupled with relaxed natural selection.  相似文献   

15.
A novel insertion sequence element, IS12528, was found to be associated with inactivation of the alcohol dehydrogenase by insertion in the adhA gene, which encodes the primary dehydrogenase subunit of the three-component membrane-bound alcohol dehydrogenase complex in Gluconobacter suboxydans. Cloning and sequencing analyses revealed that IS12528 was 905 bp in length and had a terminal inverted repeat of 18 bp. In addition, IS12528 was found to generate a 3-bp duplication (TMA, where M represents C or A) at the inserted site upon transposition. IS12528 encoded one long product of 274 amino acids that was rich in basic amino acids. This protein showed significant homology with putative transposases of the IS1031 family isolated from Acetobacter xylinum, which belongs to another genus of acetic acid bacteria. IS12528-like sequences were distributed in a wide variety of acetic acid bacteria, as determined by Southern hybridization and PCR. These observations suggest that IS12528 is one of the insertion sequences that are responsible for genetic instability leading to deficiencies in various physiological properties in a variety of acetic acid bacteria.  相似文献   

16.
Tn1935, a 23.5-kb transposon mediating resistance to ampicillin, kanamycin, mercury, spectinomycin, and sulfonamide was isolated from pZM3, an IncFIme virulence plasmid from Salmonella wien. Tn1935 possesses the entire sequence of Tn21 and contains two additional DNA segments of 0.95 and 2.7 kb carrying the ampicillin and kanamycin resistance genes, respectively. The latter is part of a composite element since it is flanked by two IS15-like insertion sequences (IS1936) in direct orientation. IS1936 is about 800 bp long and is closely related to IS15 delta, IS26, IS46, IS140, and IS176. Functional analysis of IS1936-mediated cointegrates shows that both insertion sequences are active and able to form cointegrates at the same frequency. Resolution of the cointegrates requires the presence of the host Rec system. The presence of the composite IS1936-element within Tn1935 supports the hypothesis that multidrug resistance transposons evolved by insertion of antibiotic determinants which are themselves transposable.  相似文献   

17.
18.
《Gene》1997,195(2):257-266
Three insertion sequences were characterized from the widely-used cyanobacterium Synechocystis PCC6803. They all harbored a putative transposase sequence flanked by two imperfect inverted repeats, seemed to have duplicated their target insertion site and occurred as multiple copies in the host genome. They exhibited no obvious homology with any other cyanobacterial ISs and were termed IS5S (871 bp), IS4S (1299 bp) and ISS1987 (949 bp) because they were, respectively, homologous to IS5- and IS4-bacterial elements, and to several members of the IS630-Tc1-mariner superfamily of IS elements occurring in a wide range of hosts. This suggests that these IS-elements were spread through horizontal transfer between evolutionary distant organisms. Three IS5S-copies were isolated as a rescue insertion into a replicating plasmid (IS5Sa), or subsequently cloned from a Synechocystis DNA-library probed with IS5Sa (IS5Sb and IS5Sc), and appeared to be almost identical. In the vicinity of IS5Sb, we found the ISS1987 element inserted into the IS4S element. This indicates that the ISS1987 element has been, and could still be, mobile since its transposase sequence is not interrupted with stop codons or translational frameshifts, unlike that which is found in most members of the IS630-Tc1-mariner superfamily of transposable elements.  相似文献   

19.
Summary A new halobacterial insertion element, ISH26, is described which occurs in the genome of Halobacterium halobium NRC817 in at least seven copies. A copy of ISH26 was isolated from the bacterio-opsin gene (bop) of the Bop mutant M140 of strain H. halobium R1 and characterized in more detail. It shows typical structural features of a transposable element with 16 pb terminal inverted repeat sequences and an 11 bp duplication of the target site. Two partially overlapping open reading frames (ORFs) are contained in the sequence of ISH26 on one strand. The terminal 16 bp inverted repeat of ISH26 is almost identical to the first 16 bp of the terminal inverted repeat of the ISH2 insertion element. The remaining sequences of ISH26 and ISH2 are entirely different. Two size variants of ISH26, 1,384 bp and 1,705 bp in size, are found in the H. halobium genome. The larger one (ISH26-1) contains an imperfect duplication of 321 bp at one end of ISH26.  相似文献   

20.
H J Ronecker  B Rak 《Gene》1987,59(2-3):291-296
We identified a transposable element resident in the chromosome of Escherichia coli K-12 strain HB101. This is an approx. 4400-bp-long transposon flanked by two copies of insertion sequence (IS) 1 element in direct orientation. One of the IS1 elements was found to be integrated into an IS2 element between IS2 bp 139 and bp 140 with the large moiety of IS2 within the transposon. The sequence of this part of IS2 differs from the published sequence of galOP-308::IS2 at a number of positions. Restriction analysis of the published allele, however, indicated that both alleles may in fact be identical. Since six of the eight differences found alter open reading frames, the revised sequence presents a new outlook for the potential genetic organization of IS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号