首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Yeast tRNA-Phe has been cross-linked photochemically to three aminoacyl-tRNA synthetases, yeast phenylalanyl-tRNA synthetase, Escherichia coli isoleucyl-tRNA synthetase, and E. coli valyl-tRNA synthetase. The two non-cognate enzymes are known to interact with tRNA-Phe. In each complex, three regions on the tRNA are found to cross-link. Two of these are common to all of the complexes, while the third is unique to each. Thus, the cognate and non-cognate complexes bear considerable similarity to each other in the way in which the respective enzyme orients on tRNA-Phe, a result which was also established for the complexes of E. coli tRNA-Ile (BUDZIK, G.P., LAM, S.M., SCHOEMAKER, H.J.P., and SCHIMMEL, P.R. (1975) J. Biol. Chem. 250, 4433-4439). The common regions include a piece extending from the 5'-side of the acceptor stem to the beginning of the dihydrouridine helix, and a segment running from the 3' side of the extra loop into the TpsiC helix. These two regions overlap with and include some of the homologous bases found in eight tRNAs aminoacylated by yeast phenylalanyl-tRNA synthetase (ROE, B., SIROVER, M., and DUDOCK, B. (1973) Biochemistry 12, 4146-4153). Although well separated in the primary and secondary structure, these two segments are in close proximity in the crystallographic tertiary structure. In two of the complexes, the third cross-linked fragment is near to the two common ones. The picture which emerges is that the enzymes all interact with the general area in which the two helical branches of the L-shaped tertiary structure fuse together, with additional interactions on other parts of the tRNAas well.  相似文献   

7.
8.
9.
Inactivation of yeast phenylalanine transfer ribonucleic acid by kethoxal   总被引:3,自引:0,他引:3  
M Litt 《Biochemistry》1971,10(12):2223-2227
  相似文献   

10.
11.
T W Munns  H F Sims  P A Katzman 《Biochemistry》1975,14(21):4758-4764
Immature rats treated with estradiol for selected periods of time demonstrated both increased methylation of uterine transfer ribonucleic acid (tRNA) and methylase activities. Whereas the former parameter was assessed by incubating whole uteri with [methyl-14C]methionine and measuring the incorporation of isotope into the tRNA, methylase activity was obtained by measuring the rate of incorporation of methyl groups from S-adenosyl[methyl-14C]methionine into heterologous tRNA (Escherichia coli B) in the presence of uterine cytosol preparations (100,000g supernatants). Although increased methylation of tRNA during the estrogen response was demonstrated, additional studies indicated that these results were largely attributable to an increased rate of synthesis of tRNA rather than gross changes in either the type or amount of methylated constituents present. Evidence in this regard included the inability of estrogen treatment of alter significantly the (a) resulting patterns of methyl-14C-methylated constituents of uterine tRNA, (b) the extent ot which [2-14C]guanine residues, incorporated into tRNA, become methylated, (c) the extent of methylation of precursor tRNA in the absence of tRNA synthesis, and (d) the types of methylase activities expressed in vitro.  相似文献   

12.
13.
14.
15.
16.
Transfer ribonucleic acid1 is methylated after the molecule is synthesized; at least eight enzymes are involved in the transfer of methyl groups (derived from methionine). The time courses of methylation and synthesis of tRNA during rat liver regeneration have been compared in an in vivo radioisotopic study, using 6-orotic acid-14C and 3H-methyl-L-methionine as precursors in double label pulses. Liver regeneration is a synchronized system in which biochemical events of the cell cycle are separable. Transfer RNA methylation increase precedes by several hours tRNA synthesis during regeneration, although the curves overlap. A ratio of the relative rate of methylation to the relative rate of synthesis has been made; that curve positively correlates with the rise and fall of protein synthesis during regeneration. It is clear that methylation and synthesis of tRNA are only weakly coupled; changing methyl content of the tRNA "pool" resulting from differential tRNA methylase and polymerase activities may regulate the rate of protein synthesis in the cell cycle at the translational level. The "pool sizes" of uridine monophosphate (UMP) and S-adenosylmethionine (SAM) were measured indirectly; UMP and SAM were isolated from perchloric acid supernatants and their specific activities were computed. Differential changes in radioactivity available to tRNA methylases and polymerases are not a source of artifact. That is, the control of both the synthesis and methylation of tRNA is at the enzyme level in vivo, rather than at some enzymatic step prior to those enzymatic reactions.  相似文献   

17.
Nuclear Overhauser effect studies are described for yeast tRNAAsp in 0.1 M NaCl, pH 7.0. A primary aim is to develop a general method for attacking the problem of assignment in transfer ribonucleic acids (tRNAs). Previously, we have demonstrated the utility of the nuclear Overhauser effect (NOE) between protons on adjacent base pairs combined with C8 deuterium substitution, by assigning the imino protons of the dihydrouridine stem and the two reverse-Hoogsteen base pairs T54-A58 and U8-A14. Here, we extend that approach to other parts of the molecule. We also describe several NOE-connected patterns for, e:g., m5CG and psi 55 N3H imino protons which may be of general utility. For the first time, a purine-15-pyrimidine-48 base pair (in this case A15-U48) has been assigned. A total of 13 of 25 base pairs from all parts of the molecule and several noninternally bonded imino protons have now been assigned unambiguously. This is a general method for assigning resonances in tRNA and perhaps in all double-stranded nucleic acids. This, and the distance information inherent in NOE measurements, should make NMR more generally applicable to nucleic acids.  相似文献   

18.
The corrected nucleotide sequence of yeast leucine transfer ribonucleic acid   总被引:15,自引:0,他引:15  
The nucleotide sequence of “Renaturable” leucine transfer RNA from Baker's yeast has been re-investigated. The results showed that (i) this tRNA has a sequence of DCD at positions 19–21, (ii) it has an anticodon m5CAA and (iii) it has a pseudouridine at position 40.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号