首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interspecific hybridization among Hawaiian species ofCyrtandra (Gesneriaceae) was investigated using randomly amplified polymorphic DNA (RAPD) markers. Thirty-three different primers were used to investigate interspecific hybridization for 17 different putative hybrids based on morphological intermediacy and sympatry with putative parental species. RAPD data provided evidence for the hybrid origin of all putative hybrid taxa examined in this analysis. However, the patterns in the hybrid taxa were not found to be completely additive of the patterns found in the parental species. Markers missing in the hybrid taxa can be attributed to polymorphism in the populations of the parental species and the dominant nature of inheritance for RAPD markers. Unique markers found within hybrid taxa require further explanation but do not necessarily indicate that the taxa are not of hybrid origin. The implications suggest that these interspecific hybridization events had, and continue to have, an effect on the adaptive radiation and conservation biology ofCyrtandra.  相似文献   

2.
The goal of DNA barcoding is to enable the rapid identification of taxa from short diagnostic DNA sequence profiles. But how feasible is this objective when many evolutionary processes, such as hybridization and selective sweeps, cause alleles to be shared among related taxa? In this issue of Molecular Ecology, Percy et al. (2014) test the full suite of seven candidate plant barcoding loci in a broad geographic sample of willow species. They show exceptional plastid haplotype sharing between species across continents, with most taxa not possessing a unique barcode sequence. Using population genetic and molecular dating analyses, they implicate hybridization and selective sweeps, but not incomplete lineage sorting, as the historical processes causing widespread haplotype sharing among willow taxa. This study represents an exceptional case of how poorly barcoding can perform, and highlights methodological issues using universal organellar regions for species identification.  相似文献   

3.
Interspecific hybridization and polyploidy are pivotal processes in plant evolution and speciation. The fate of new hybrid and polyploid taxa is determined by their ability to reproduce either sexually or asexually. Hybrids and allopolyploids with odd chromosome numbers are frequently sterile but some establish themselves through asexual reproduction (vegetative or apomixis). This allows novel genotypes to become established by isolating them from gene flow and leads to complex patterns of variation. The genus Sorbus is a good example of taxonomic complexity arising from the combined effects of hybridization, polyploidy and apomixis. The Avon Gorge in South‐west Britain contains the greatest diversity of Sorbus in Europe, with three endemic species and four putative endemic novel hybrids among its 15 native Sorbus taxa. We used a combination of nuclear microsatellite and chloroplast DNA markers to investigate the evolutionary relationships among these Sorbus taxa within the Avon Gorge. We confirm the genetic identity of putative novel taxa and show that hybridization involving sexual diploid species, primarily S. aria and S. torminalis and polyploid facultative apomictic species from subgenus Aria, has been responsible for generating this biodiversity. Importantly our data show that this creative evolutionary process is ongoing within the Avon Gorge. Conservation strategies for the rare endemic Sorbus taxa should therefore consider all Sorbus taxa within the Gorge and must strive to preserve this evolutionary process rather than simply the individual rare taxa that it produces.  相似文献   

4.
In this review, we discuss the importance of hybridization among species for the conservation of Hawaiian picture-winged Drosophila. Hybridization can be a positive evolutionary process that creates new species and increases the adaptation of populations and species through the spread of adaptive alleles and traits. Conversely, hybridization can disrupt the genetic integrity of species or populations and this may be most detrimental among taxa that are recently hybridizing due to recent ecological changes. The loss of biodiversity in Hawaiian Drosophila through hybridization may be facilitated by habitat alteration and introduced species that reduce population sizes and alter geographic distributions of native species. We briefly review the evidence for hybridization in the genus Drosophila and then focus on hybridization in the Hawaiian picture-winged Drosophila. We examine three general approaches for identifying hybrids and for assessing the factors that appear to contribute to hybridization and the potential ecological and evolutionary outcomes of hybrids in natural populations. Overall, the potential for hybridization among species will likely increase the risk of extinction for Hawaiian picture-winged Drosophila species. Thus, it is important to consider the potential for hybridization among species when developing plans for the conservation of Hawaiian Drosophila.  相似文献   

5.
The process of speciation involves the accumulation of reproductive isolation (RI) between diverging lineages. Selection can favor increased RI via the process of reinforcement, whereby costs to hybridization impose selection for increased prezygotic RI. Reinforcement results in phenotypic divergence within at least one taxon, as a result of costly hybridization between sympatric taxa. The strength of selection driving reinforcement is determined by the cost of hybridization and the frequency of hybridization. We investigated the cost of hybridization by quantifying postmating RI barriers among Phlox species that comprise one of the best‐studied cases of reinforcement. We determined if the strength of RI differs among lineages that have and have not undergone reinforcement, how much variability there is within species in RI, and whether RI is associated with phylogenetic relatedness. We found high RI for the species that underwent phenotypic divergence due to reinforcement; however, RI was also high between other species pairs. We found extensive variability in RI among individuals within species, and no evidence that the strength of RI was associated with phylogenetic relatedness. We suggest that phenotypic divergence due to reinforcement is associated with the frequency of hybridization and introgression, and not the cost of hybridization in this clade.  相似文献   

6.
Flowering cherries are classified into Prunus subgenus Cerasus (family Rosaceae). Nine species and some varieties originated in Japan were used in this study. Phylogenetic relationships among Japanese taxa were analyzed by four chloroplast regions using 46 individuals from 16 taxa. Eighteen haplotypes were distinguished. P. pendula f. ascendens and P. cerasoides formed a clade which is distantly related to other Japanese taxa. These two species were morphologically different from other taxa. All Japanese taxa except for P. pendula f. ascendens formed another clade. All taxa in this clade except for P. maximowiczii showed very similar sequences. However, these taxa could be identified by many morphological characters. Even now, based on previous work, it is thought that interspecific hybridization frequently occurs in flowering cherries. We conclude from the current study, Japanese flowering cherries have experienced complicated speciation arising from hybridization.  相似文献   

7.
Hybridization and convergent evolution are phenomena of broad interest in evolutionary biology, but their occurrence poses challenges for reconstructing evolutionary affinities among affected taxa. Sticklebacks in the genus Pungitius are a case in point: evolutionary relationships and taxonomic validity of different species and populations in this circumpolarly distributed species complex remain contentious due to convergent evolution of traits regarded as diagnostic in their taxonomy, and possibly also due to frequent hybridization among taxa. To clarify the evolutionary relationships among different Pungitius species and populations globally, as well as to study the prevalence and extent of introgression among recognized species, genomic data sets of both reference genome‐anchored single nucleotide polymorphisms and de novo assembled RAD‐tag loci were constructed with RAD‐seq data. Both data sets yielded topologically identical and well‐supported species trees. Incongruence between nuclear and mitochondrial DNA‐based trees was found and suggested possibly frequent hybridization and mitogenome capture during the evolution of Pungitius sticklebacks. Further analyses revealed evidence for frequent nuclear genetic introgression among Pungitius species, although the estimated proportions of autosomal introgression were low. Apart from providing evidence for frequent hybridization, the results challenge earlier mitochondrial and morphology‐based hypotheses regarding the number of species and their affinities in this genus: at least seven extant species can be recognized on the basis of genetic data. The results also shed new light on the biogeographical history of the Pungitius‐complex, including suggestion of several trans‐Arctic invasions of Europe from the Northern Pacific. The well‐resolved phylogeny should facilitate the utility of this genus as a model system for future comparative evolutionary studies.  相似文献   

8.
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome‐wide sequence information, independent data were obtained from genotyping‐by‐sequencing and a target‐enrichment experiment that returned 244 low‐copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent‐based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat‐group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat‐group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.  相似文献   

9.
Male nuptial colour hues are important for the maintenance of reproductive isolation among cichlid fish species, and environmental changes that lead to narrower light spectra can lead to hybridization. However, cichlid species can naturally co-occur in narrow light spectrum habitats, such as turbid shallow lakes and the deep benthic zones of African rift lakes. Closely related species from narrow light spectrum habitats tend to differ little in the palette of male nuptial colours, thus for these taxa differences in colour patterns may be more important than differences in colour hue for species recognition. To investigate this hypothesis we examined morphometric and genetic differentiation among males of four sympatric putative species within the deep-water genus Diplotaxodon. These taxa live in a narrow-light spectrum environment where only blue light is present, and males differ primarily in 'monochromatic' black, white and silver patterning of the body and fins. Significant genetic differentiation was present among taxa in both microsatellite DNA and mitochondrial DNA, including one pair with no significant morphometric differentiation. Thus, these taxa represent reproductively isolated biological species, a result consistent with male nuptial patterning being important for species recognition and assortative mating. As such, we suggest that narrow-light spectra need not always represent barriers to effective visually mediated mate recognition.  相似文献   

10.
This study investigates hybridization and population genetics of two species of macaque monkey in Sulawesi, Indonesia, using molecular markers from mitochondrial, autosomal, and Y-chromosome DNA. Hybridization is the interbreeding of individuals from different parental taxa that are distinguishable by one or more heritable characteristics. Because hybridization can affect population structure of the parental taxa, it is an important consideration for conservation management. On the Indonesian island of Sulawesi an explosive diversification of macaques has occurred; seven of 19 species in the genus Macaca live on this island. The contact zone of the subjects of this study, M. maura and M. tonkeana, is located at the base of the southwestern peninsula of Sulawesi. Land conversion in Sulawesi is occurring at an alarming pace; currently two species of Sulawesi macaque, one of which is M. maura, are classified as endangered species. Results of this study indicate that hybridization among M. maura and M. tonkeana has led to different distributions of molecular variation in mitochondrial DNA and nuclear DNA in the contact zone; mitochondrial DNA shows a sharp transition from M. maura to M. tonkeana haplotypes, but nuclear DNA from the parental taxa is homogenized in a narrow hybrid zone. Similarly, within M. maura divergent mitochondrial DNA haplotypes are geographically structured but population subdivision in the nuclear genome is low or absent. In M. tonkeana, mitochondrial DNA haplotypes are geographically structured and a high level of nuclear DNA population subdivision is present in this species. These results are largely consistent with a macaque behavioral paradigm of female philopatry and obligate male dispersal, suggest that introgression between M. maura and M. tonkeana is restricted to the hybrid zone, and delineate one conservation management unit in M. maura and at least two in M. tonkeana.  相似文献   

11.
The annual sunflowers (Helianthus sect. Helianthus) present a formidable challenge for phylogenetic inference because of ancient hybrid speciation, recent introgression, and suspected issues with deep coalescence. Here we analyze sequence data from 11 nuclear DNA (nDNA) genes for multiple genotypes of species within the section to (1) reconstruct the phylogeny of this group, (2) explore the utility of nDNA gene trees for detecting hybrid speciation and introgression; and (3) test an empirical method of hybrid identification based on the phylogenetic congruence of nDNA gene trees from tightly linked genes. We uncovered considerable topological heterogeneity among gene trees with or without three previously identified hybrid species included in the analyses, as well as a general lack of reciprocal monophyly of species. Nonetheless, partitioned Bayesian analyses provided strong support for the reciprocal monophyly of all species except H. annuus (0.89 PP), the most widespread and abundant annual sunflower. Previous hypotheses of relationships among taxa were generally strongly supported (1.0 PP), except among taxa typically associated with H. annuus, apparently due to the paraphyly of the latter in all gene trees. While the individual nDNA gene trees provided a useful means for detecting recent hybridization, identification of ancient hybridization was problematic for all ancient hybrid species, even when linkage was considered. We discuss biological factors that affect the efficacy of phylogenetic methods for hybrid identification.  相似文献   

12.
Incoronata Galasso 《Génome》2003,46(6):1118-1124
Multiple-target fluorescence in situ hybridization (FISH) was applied on mitotic chromosomes of seven Lens taxa using two highly repetitive sequences (pLc30 and pLc7) isolated from the cultivated lentil and the multigene families for the 18S-5.8S-25S (pTa71) and 5S rRNA (pTa794) from wheat simultaneously as probes. The number and location of pLc30 and pLc7 sites on chromosomes varied markedly among the species, whereas the hybridization pattern of 5S rDNA and 18S-5.8S-25S rDNA was less variable. In general, each species showed a typical FISH karyotype and few differences were observed among accessions belonging to the same species, except for the accessions of Lens odemensis. The most similar FISH karyotype to the cultivated lentil is that of Lens culinaris subsp. orientalis, whereas Lens nigricans and Lens tomentosus are the two species that showed the most divergent FISH patterns compared with all taxa for number and location of pLc30 and 18S-5.8S-25S rDNA sites.  相似文献   

13.
枸杞属(茄科)新类群杂交起源初探   总被引:4,自引:2,他引:2  
为探讨枸杞属新类群的起源及国产枸杞属植物的亲缘关系,该文使用核基因颗粒性结合淀粉合成酶基因(GBSSI)片段,对国产7个类群的枸杞属植物进行了分子系统学研究.结果表明:中国分布的枸杞属植物属于旧世界类群并分为4个强烈支持的分支,而新类群的形成与杂交密切相关.此外,初步分析还显示宁夏枸杞有较高的遗传分化.  相似文献   

14.
The rate of hybridization among taxa is a central consideration in any discussion of speciation, but rates of hybridization are difficult to estimate in most wild populations of animals. We used a successful citizen science dataset, eBird, to estimate the rates of hybridization for wild birds in the United States. We calculated the frequency at which hybrid individuals belonging to different species, families, and orders of birds were observed. Between 1 January 2010 and 31 December 2018, a total of 334,770,194 species records were reported to eBird within the United States. Of this total, 212,875 or 0.064% were reported as hybrids. This estimate is higher than the rate of hybridization (0.00167%) reported by Mayr based on impressions from a career studying museum specimens. However, if the 10 most influential hybrid species are removed from the eBird dataset, the rate of hybridization decreases substantially to about 0.009%. We conclude that the rate of hybridization for individuals in most bird species is extremely low, even though the potential for birds to produce fertile offspring through hybrid crosses is high. These findings indicate that there is strong prezygotic selection working in most avian species.  相似文献   

15.
Genomic introgression among divergent taxa following human-mediated secondary contact is a growing concern for the management and conservation of aquatic biodiversity. We simulated the composition of taxa following admixture and hybridization by independently altering three variables: (1) initial proportion of parental taxa following secondary contact; (2) fitness gradients among parental and introgressant taxa; and, (3) strength of assortative mating among these taxa. Ultimately, we established that parental taxa will trend toward extinction as introgression proceeds in spite of even a heavy fitness penalty for the hybrids. Also, the number of generations required (rate) to reach an arbitrarily determined threshold of extinction (< 5.0%) was inversely related to the strength of the relative fitness gradients among parental and derivative hybridized lineages. Moreover, the rates of extinction for parental taxa depended on the initial relative proportions in the admixture with rare taxa going extinct more rapidly than abundant taxa. Finally, the strength of assortative mating (as an evolved or reinforced mechanism of pre-mating isolation) will affect the rate of extinction. Introgressive hybridization, therefore, emerges as an important risk to structural biodiversity wherever divergent, yet reproductively compatible, taxa come together naturally or are brought together through human activities.  相似文献   

16.

Background  

To understand speciation and the maintenance of taxa as separate entities, we need information about natural hybridization and gene flow among species.  相似文献   

17.
Lynn Bohs 《Biotropica》2000,32(1):70-79
The Witheringia solanacea complex consists of three species, W. asterotricha, W. meiantha, and W, solanacea, native to Central and South America. The three taxa are morphologically similar, and their distinctions and relationships have been the subject of taxonomic controversy. To investigate breeding systems and potential for hybridization among the taxa of the complex, two Costa Rican accessions per species were used in a crossing program. All plants were self‐incompatible except for one accession of W. solanacea. Hybrid plants resulted from all crosses among accessions of W. asterotricha and W. solanacea. Most crosses were unsuccessful using W. meiantha in combination with either of the other two taxa. It is suggested that W. meiantha and W. solanacea be recognized as separate taxa, but that W. asterotricha be considered a synonym of W. solanacea.  相似文献   

18.
A random-fragment hybridization method employing nuclear DNA has been developed to explore phylogenetic relationships in the genus Neurospora. Four cloned fragments and repetitive rDNA sequences were examined for restriction-fragment polymorphisms among 14 strains representing four species. The findings demonstrate that variation among randomly selected nuclear fragments can be employed to group related taxa with a higher degree of resolution than has been obtained with other DNA hybridization methods, isozyme electrophoresis, or restriction analysis of repetitive DNA. Based on our analysis of cloned fragments, we conclude that four-spored, secondarily-homothallic strains collected worldwide represent a monophyletic group. Trees constructed on the basis of restriction-fragment cataloging and coarse-structure restriction-site maps are for the most part consistent with the present mating-based species concept. We are encouraged that this method will provide an additional important experimental tool for evolutionary studies.  相似文献   

19.
20.
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre-and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species,R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation.All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators;reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号