首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition between oviparity and viviparity in reptiles is generally accepted to be a gradual process, the result of selection for increasingly prolonged egg retention within the oviduct. We examined egg retention plasticity in an oviparous strain of the lacertid lizard Zootoca vivipara, a species having both oviparous and viviparous populations. We forced a group of female Z. vivipara to retain their clutch in utero by keeping them in dry substrata, and assessed the effect on embryonic development and hatching success, along with offspring phenotype and locomotor performance. Forced egg retention for one additional week affected the developmental stage of embryos at oviposition, as well as hatchling robustness and locomotor performance. However, embryos from forced clutch retention treatment reached one stage unit more than control embryos at oviposition time. Embryos from control eggs were more developed than embryos from experimental eggs after approximately the same period of external incubation, showing that embryonic development is retarded during the period of extended egg retention, despite the high temperature inside the mother's body. Significant differences in external incubation time were only found in one of the two years of study. Hatching success was much lower in the experimental group with forced egg retention (21.1%) than in the control group (95.4%). Therefore, we conclude that there are limitations that hinder the advance of intrauterine embryonic development beyond the normal time of oviposition, and that extended egg retention does not represent clear advantages in this population of Z. vivipara. Nevertheless, the fact that some eggs are successful after forced egg retention could be advantageous for the females that are able to retain their clutch under unfavourable climatic conditions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 75–82.  相似文献   

2.
Parker SL  Andrews RM 《Oecologia》2007,151(2):218-231
Cold environmental temperature is detrimental to reproduction by oviparous squamate reptiles by prolonging incubation period, negatively affecting embryonic developmental processes, and by killing embryos in eggs directly. Because low soil temperature may prevent successful development of embryos in eggs in nests, the geographic distributions of oviparous species may be influenced by the thermal requirements of embryos. In the present study, we tested the hypothesis that low incubation temperature determines the northern distributional limit of the oviparous lizard Sceloporus undulatus. To compare the effects of incubation temperature on incubation length, egg and hatchling survival, and hatchling phenotypic traits, we incubated eggs of S. undulatus under temperature treatments that simulated the thermal environment that eggs would experience if located in nests within their geographic range at 37°N and north of the species’ present geographic range at latitudes of 44 and 42°N. After hatching, snout–vent length (SVL), mass, tail length, body condition (SVL relative to mass), locomotor performance, and growth rate were measured for each hatchling. Hatchlings were released at a field site to evaluate growth and survival under natural conditions. Incubation at temperatures simulating those of nests at 44°N prolonged incubation and resulted in hatchlings with shorter SVL relative to mass, shorter tails, shorter hind limb span, slower growth, and lower survival than hatchlings from eggs incubated at temperatures simulating those of nests at 37 and 42°N. We also evaluated the association between environmental temperature and the northern distribution of S. undulatus. We predicted that the northernmost distributional limit of S. undulatus would be associated with locations that provide the minimum heat sum (∼495 degree-days) required to complete embryonic development. Based on air and soil temperatures, the predicted northern latitudinal limit of S. undulatus would lie at ∼40.5–41.5°N. Our predicted value closely corresponds to the observed latitudinal limit in the eastern United States of ∼40°N. Our results suggest that soil temperatures at northern latitudes are not warm enough for a sufficient length of time to permit successful incubation of S. undulatus embryos. These results are consistent with the hypothesis that incubation temperature is an important factor limiting the geographic distributions of oviparous reptile species at high latitudes and elevations.  相似文献   

3.
The majority of research into the timing of gonad differentiation (and sex determination) in reptiles has focused on oviparous species. This is largely because: (1) most reptiles are oviparous; (2) it is easier to manipulate embryonic developmental conditions (e.g., temperature) of eggs than oviductal embryos and (3) modes of sex determination in oviparous taxa were thought to be more diverse since viviparity and environmental sex determination (ESD)/temperature-dependent sex determination (TSD) were considered incompatible. However, recent evidence suggests the two may well be compatible biological attributes, opening potential new lines of enquiry into the evolution and maintenance of sex determination. Unfortunately, the baseline information on embryonic development in viviparous species is lacking and information on gonad differentiation and sexual organ development is almost non-existent. Here we present an embryonic morphological development table (10 stages), the sequence of gonad differentiation and sexual organ development for the viviparous spotted snow skink (Niveoscincus ocellatus). Gonad differentiation in this species is similar to other reptilian species. Initially, the gonads are indifferent and both male and female accessory ducts are present. During stage 2, in the middle third of development, differentiation begins as the inner medulla regresses and the cortex thickens signaling ovary development, while the opposite occurs in testis formation. At this point, the Müllerian (female reproductive) duct regresses in males until it is lost (stage 6), while females retain both ducts until after birth. In the later stages of testis development, interstitial tissue forms in the medulla corresponding to maximum development of the hemipenes in males and the corresponding regression in the females.  相似文献   

4.
Viviparity in reptiles is hypothesized to evolve in cold climates at high latitudes and high elevations through selection for progressively longer periods of egg retention. Oxygen consumption of embryos increases during development and therefore longer periods of egg retention should be associated with maternal or embryonic features that enhance embryonic oxygen availability. We tested the hypotheses that embryos of the oviparous lizard Sceloporus undulatus from a high-latitude population in New Jersey are oviposited at more advanced developmental stages and have a higher growth rate at low oxygen partial pressures ( p O2) than embryos from a low-latitude population in South Carolina. These hypotheses were rejected; embryos from the two populations did not differ in embryonic stage at oviposition, survival, rate of differentiation or growth in mass when incubated under simulated in utero conditions at low oxygen concentrations. We also estimated the effective p O2 experienced by lizard embryos in utero . At an effective p O2 of 8.6 kPa (9% O2), development of S. undulatus embryos is arrested at Dufaure and Hubert stage 30 and at a dry mass of 0.8 mg. Physiological and morphological features of gravid females, embryos, or both, that facilitate oxygen uptake for developing embryos appear to be a critical early step during the evolution of reptilian viviparity. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 289–299.  相似文献   

5.
Reptilian viviparity evolves through selection for increasingly prolonged egg retention within the oviduct. In the majority of sceloporine lizard species, however, egg retention past the normal time of oviposition results in retarded or arrested embryonic development. In this study, we tested the hypothesis that the amount of embryonic development normally attained in utero is directly related to in utero oxygen partial pressure (PO(2)). The three species of sceloporine lizards we used are characterized by developmental arrest (Urosaurus ornatus), retarded development (Sceloporus virgatus), and normal development (Sceloporus scalaris) when eggs are retained. We incubated eggs of these species for 10 d under conditions that simulated retention in the oviduct at a range of experimental oxygen partial pressures (PO(2)). We estimated in utero PO(2) from a standard curve generated from the stage and dry mass of experimental embryos incubated for 10 d at known PO(2). The standard curve was then used to predict the PO(2) associated with the observed rate of development of embryos retained in utero. The results of this study showed that the degree of embryonic development attained in utero during egg retention was positively associated with in utero PO(2). The results indicate that oxygen availability in utero is associated with interspecific differences in the capacity to support intrauterine development in sceloporine lizards.  相似文献   

6.
Encapsulated embryos of the pond snail Helisoma trivolvis have been useful for examining neural development and neural circuit function during development. However, their full potential in developmental studies is limited by the lack of an effective method for long-term culture of decapsulated embryos. In the present study, decapsulated early embryos were either cultivated ex ovo in various media under different environmental conditions or transplanted into host egg capsules. Although diluted capsular fluid, 30% M199, and albumen-gland-conditioned medium were partially effective in promoting embryonic growth for a short time, none of the media promoted normal embryonic development in long-term tests. In contrast, after previously decapsulated and experimentally manipulated embryos were transplanted into host capsules, their growth and development were similar to their intact siblings. In combination with laser ablation, this transplantation technique was used to demonstrate the role played by a pair of serotonergic neurons in regulating an embryonic rotational behavior. These results suggest that embryonic transplantation is an extremely effective technique for achieving long-term growth and development of previously decapsulated embryos and therefore can be instrumental in investigating cell lineage, function, and development in encapsulated embryos.  相似文献   

7.
Robin M.  Andrews 《Journal of Zoology》1997,243(3):579-595
The evolutionary transition between oviparity and viviparity in squamate reptiles presumably occurs via a gradual increase in the duration of egg retention, the production of thinner eggshells, and increases in the vascularity of maternal and embryonic tissues. The 'ease' of this transition may differ among taxa. For example, in the genus Sceloporus , the scalaris species group contains both oviparous and viviparous species, and female Sceloporus scalaris can extend egg retention facultatively in response to the absence of a suitable site for oviposition without impairing embryonic development. In contrast, the undulatus species group contains only oviparous species, and, while female Sceloporus virgatus can extend egg retention, doing so retards embryonic development. I tested several hypotheses that would explain the greater ability of 5. scalaris than S. virgatus to extend egg retention. In this study, female S. scalaris retained eggs for 19 d without affecting the mortality of embryos, total developmental time, or dry mass of hatchlings. In contrast, when female S. virgatus retained eggs for 18 d, embryos had very high mortality and eggs took significantly longer to hatch than control (non-retained) eggs, although the dry mass of hatchlings was not affected. The ability of S. scalaris females to retain eggs with little negative effect on embryonic development was associated with relatively large chorioallantois, relatively thin eggshells, and relatively small clutch masses. These observations suggest that phylogenetic differences in the ability to extend egg retention may facilitate or constrain the evolution of viviparity in some lineages.  相似文献   

8.
Yolk is the primary source of calcium for embryonic growth and development for most squamates, irrespective of mode of parity. The calcified eggshell is a secondary source for embryonic calcium in all oviparous eggs, but this structure is lost in viviparous lineages. Virginia striatula is a viviparous snake in which embryos obtain calcium from both yolk and placental transport of uterine calcium secretions. The developmental pattern of embryonic calcium acquisition in V. striatula is similar to that for oviparous snakes. Calbindin-D(28K) is a marker for epithelial calcium transport activity and plasma membrane Ca(2+)-ATPase (PMCA) provides the energy to catalyze the final step in calcium transport. Expression of calbindin-D(28K) and PMCA was measured by immunoblotting in yolk sac splanchnopleure and chorioallantois of a developmental series of V. striatula to test the hypothesis that these proteins mediate calcium transport to embryos. In addition, we compared the expression of calbindin-D(28K) in extraembryonic membranes of V. striatula throughout development to a previously published expression pattern in an oviparous snake to test the hypothesis that the ontogeny of calcium transport function is independent of reproductive mode. Expression of calbindin-D(28K) increased in yolk sac splanchnopleure and chorioallantois coincident with calcium mobilization from yolk and uterine sources and with embryonic growth. The amount of PMCA in the chorioallantois did not change through development suggesting its expression is not rate limiting for calcium transport. The pattern of expression of calbindin-D(28K) and PMCA confirms our initial hypothesis that these proteins mediate embryonic calcium uptake. In addition, the developmental pattern of calbindin-D(28K) expression in V. striatula is similar to that of an oviparous snake, which suggests that calcium transport mechanisms and their regulation are independent of reproductive mode.  相似文献   

9.
Temperature profoundly affects the rate and trajectory of embryonic development, and thermal extremes can be fatal. In viviparous species, maternal behaviour and physiology can buffer the embryo from thermal fluctuations; but in oviparous animals (like most reptiles and all birds), an embryo is likely to encounter unpredictable periods when incubation temperatures are unfavourable. Thus, we might expect natural selection to have favoured traits that enable embryos to maintain development despite those fluctuations. Our review of recent research identifies three main routes that embryos use in this way. Extreme temperatures (i) can be avoided (e.g. by accelerating hatching, by moving within the egg, by cooling the egg by enhanced rates of evaporation, or by hysteresis in rates of heating versus cooling); (ii) can be tolerated (e.g. by entering diapause, by producing heat‐shock proteins, or by changing oxygen use); or (iii) the embryo can adjust its physiology and/or developmental trajectory in ways that reduce the fitness penalties of unfavourable thermal conditions (e.g. by acclimating, by exploiting brief windows of favourable conditions, or by producing the hatchling phenotype best suited to those incubation conditions). Embryos are not simply passive victims of ambient conditions. Like free‐living stages of the life cycle, embryos exhibit behavioural and physiological plasticity that enables them to deal with unpredictable abiotic challenges.  相似文献   

10.
The evolution of reptilian viviparity is favoured, according to the cold‐climate hypothesis, at high latitudes or altitudes, where egg retention would entail thermal benefits for embryogenesis because of maternal thermoregulation. According to this hypothesis, and considering that viviparity would have evolved through a gradual increase in the extent of intrauterine egg retention, highland oviparous populations are expected to exhibit more advanced embryo development at oviposition than lowland populations. We tested for possible differences in the level of egg retention, embryo development time and thermal biology of oviparous Zootoca vivipara near the extreme altitudinal limits of the species distribution in the north of Spain (mean altitude for lowland populations, 235 m asl.; for highland populations, 1895 m asl.). Altitude influenced neither temperature of active lizards in the field nor temperature selected by lizards in a laboratory thermal gradient, and pregnant females selected lower temperatures in the thermal gradient than did males and nonpregnant females across altitudinal levels. Eggs from highland populations contained embryos more developed at the time of oviposition (Dufaure and Hubert's stages 33–35) than eggs of highland populations (stages 30–34) and partly because of this difference incubation time was shorter for highland embryos. When analysed for clutches from both altitudinal extremes at the same embryonic stage at oviposition (stage 33), again incubation time was shorter for highland populations, indicating genuine countergradient variation in developmental rate. Our results indicate that temperature is an environmental factor affecting the geographical distribution of different levels of egg retention in Z. vivipara, as predicted by the cold‐climate hypothesis on the evolution of viviparity.  相似文献   

11.
The Wnt signaling pathway plays a pivotal role in vertebrate early development and morphogenesis. Duplin (axis duplication inhibitor) interacts with beta-catenin and prevents its binding to Tcf, thereby inhibiting downstream Wnt signaling. Here we show that Duplin is expressed predominantly from early- to mid-stage mouse embryogenesis, and we describe the generation of mice deficient in Duplin. Duplin(-/-) embryos manifest growth retardation from embryonic day 5.5 (E5.5) and developmental arrest accompanied by massive apoptosis at E7.5. The mutant embryos develop into an egg cylinder but do not form a primitive streak or mesoderm. Expression of beta-catenin target genes, including those for T (brachyury), Axin2, and cyclin D1, was not increased in Duplin(-/-) embryos, suggesting that the developmental defect is not simply attributable to upregulation of Wnt signaling caused by the lack of this inhibitor. These results suggest that Duplin plays an indispensable role, likely by a mechanism independent of inhibition of Wnt signaling, in mouse embryonic growth and differentiation at an early developmental stage.  相似文献   

12.
The evolution of reptilian viviparity (live bearing) from oviparity (egg laying) is thought to require transitional stages of increasingly longer periods of embryonic development in utero, that is, longer periods of egg retention by the gravid female. Studies on sceloporine lizards demonstrate that embryonic responses to egg retention that is extended beyond the time of normal oviposition range from developmental arrest to normal development. The present study was designed to test the hypothesis that O(2) availability is the proximate factor that determines the rate and degree of development that reptilian embryos undergo in utero. Eggs of Sceloporus undulatus were incubated under conditions of low (LOX), normal (NOX), and high (HOX) oxygen both early and late in development. The LOX treatment consistently had a negative effect on development in terms of embryonic differentiation and growth, length of incubation, egg mortality, and hatchling size. Moreover, the LOX treatment had a stronger negative effect later in development than earlier in development. The results support the hypothesis that limited oxygen availability in utero acts as a developmental constraint. They further indicate that selection for extended egg retention, per se, will not lead to viviparity unless each incremental increase in the duration of egg retention is coupled with selection for traits (e.g., vascularity of oviduct and chorioallantois, hemoglobin oxygen affinity, etc.) that enhance O(2) availability to embryos. Such selection would be the most efficacious in cold climates where the effects of hypoxia would be the least likely to limit embryonic development.  相似文献   

13.
Surveillance and repair of DNA damage are essential for maintaining the integrity of the genetic information that is needed for normal development. Several multienzyme pathways, including the excision repair of damaged or missing bases, carry out DNA repair in mammals. We determined the developmental role of the X-ray cross-complementing (Xrcc)-1 gene, which is central to base excision repair, by generating a targeted mutation in mice. Heterozygous matings produced Xrcc1-/- embryos at early developmental stages, but not Xrcc1-/- late-stage fetuses or pups. Histology showed that mutant (Xrcc1-/-) embryos arrested at embryonic day (E) 6.5 and by E7.5 were morphologically abnormal. The most severe abnormalities observed in mutant embryos were in embryonic tissues, which showed increased cell death in the epiblast and an altered morphology in the visceral embryonic endoderm. Extraembryonic tissues appeared relatively normal at E6.5-7.5. Even without exposure to DNA-damaging agents, mutant embryos showed increased levels of unrepaired DNA strand breaks in the egg cylinder compared with normal embryos. Xrcc1-/- cell lines derived from mutant embryos were hypersensitive to mutagen-induced DNA damage. Xrcc1 mutant embryos that were also made homozygous for a null mutation in Trp53 underwent developmental arrest after only slightly further development, thus revealing a Trp53-independent mechanism of embryo lethality. These results show that an intact base excision repair pathway is essential for normal early postimplantation mouse development and implicate an endogenous source of DNA damage in the lethal phenotype of embryos lacking this repair capacity.  相似文献   

14.
Embryonic growth and development are impacted by environmental conditions. In avian systems, parents tightly control these environments through provisioning of nutrients to the egg and through incubation. Parents can influence embryonic development through egg size, eggshell conductance, hormones, or other substances deposited in eggs and through the onset and temperature of incubation. In addition to these parental influences, evidence suggests that avian embryos are able to perceive and actively respond to their environment during incubation and adjust their own development. Evolution of embryos' responses to developmental environments in birds can be understood in the context of parent-offspring conflicts. When parental investments favor future reproduction over current reproduction, current offspring pay fitness costs, which result in strong selection for offspring that can respond to developmental environments independent of their parents. Here, we review literature indicating that avian embryos actively respond to maternally derived components of the egg, vocalizations, and differences in day length, and we explore these responses in the context of three situations where the consequence of these environments to the fitnesses of offspring and parents differ: the degree of synchrony in hatching, the deposition of hormones in yolks, and seasonal timing of breeding. However, the adaptive significance of responses of embryos to developmental environments arising from parent-offspring conflict has not been adequately explored in birds.  相似文献   

15.
J. Liu  K. Song    M. F. Wolfner 《Genetics》1995,141(4):1473-1481
The fs(1)Ya protein (YA) is an essential, maternally encoded, nuclear lamina protein that is under both developmental and cell cycle control. A strong Ya mutation results in early arrest of embryos. To define the function of YA in the nuclear envelope during early embryonic development, we characterized the phenotypes of four Ya mutant alleles and determined their molecular lesions. Ya mutant embryos arrest with abnormal nuclear envelopes prior to the first mitotic division; a proportion of embryos from two leaky Ya mutants proceed beyond this but arrest after several abnormal divisions. Ya unfertilized eggs contain nuclei of different sizes and condensation states, apparently due to abnormal fusion of the meiotic products immediately after meiosis. Lamin is localized at the periphery of the uncondensed nuclei in these eggs. These results suggest that YA function is required during and after egg maturation to facilitate proper chromatin condensation, rather than to allow a lamin-containing nuclear envelope to form. Two leaky Ya alleles that partially complement have lesions at opposite ends of the YA protein, suggesting that the N- and C-termini are important for YA function and that YA might interact with itself either directly or indirectly.  相似文献   

16.
A A Ne?fakh 《Ontogenez》1976,7(6):630-633
The early embryos L. stagnalis were placed in the actinomycin solution at the successive developmental stages. The permeability to actinomycin was previously increased by the pricking through egg capsules. The inactivation of nuclei by actinomycin up to the stage of 12 blastomeres resulted in the arrest of development at the 22 cell stage. The inactivation of nuclei at the subsequent development stages resulted in the developmental arrest at later stages. These data suggest that the embryonic development up to the 22 cell stage is provided by the nuclear function during oogenesis. The morphogenetic nuclear function of the embryo begins at the stage of 12 blastomeres and provides the embryonic development beyond the 22 cell stage.  相似文献   

17.
The concept of the oviparity-viviparity continuum refers to the wide range in the length of intrauterine egg retention and, hence, in the stage of embryonic development at oviposition existing in squamates. The evolutionary process underlying this continuum may involve not only a lengthening of egg retention in utero, but also a marked reduction in the thickness of the eggshell. The idea that there may exist a negative correlation between the developmental stage reached by the embryo at oviposition and the eggshell thickness within squamates, although supported by the comparison of oviparous vs. viviparous species, has seldom been evaluated by comparing eggshell thickness of oviparous forms with different lengths of intrauterine egg retention. Eggs of two distinct oviparous clades of the lizard Lacerta vivipara were compared. The eggs laid by females from Slovenian and Italian populations have thicker eggshells, contain embryos on average less developed at the time of oviposition, and require a longer incubation period before hatching than the eggs laid by females from French oviparous populations. Our data and several other examples available from the literature support the idea that the lengthening of intrauterine retention of eggs and the shortening of the subsequent external incubation of eggs are associated with reduction in the thickness of the eggshell, at least in some lineages of oviparous squamates. The current hypotheses that may account for this correlation are presented and a few restrictions and refinements to those hypotheses are discussed. In particular, other changes, such as increased vascularization of the oviduct and of the extraembryonic membranes, may play the same role as the decrease of eggshell thickness in facilitating prolonged intrauterine egg retention in squamates. Future studies should also consider the hypothesis that the length of intrauterine retention might directly depend on the extent of maternal-fetal chemical communication through the eggshell barrier.  相似文献   

18.
Plastic responses of embryos to developmental environments can shape phenotypes in ways that impact fitness. The mechanisms by which developmental conditions affect offspring phenotypes vary substantially among taxa and are poorly understood in most systems. In this study, we evaluate the effects of thermal and hydric conditions on patterns of egg water uptake, embryonic development and yolk metabolism in embryos of the lizard Anolis sagrei to gain insights into how these factors shape morphological variation in hatchlings. Our 3 × 2 experimental design (3 thermal and 2 hydric conditions) revealed that developmental temperature has strong effects on rates of development and yolk metabolism, but the impacts of moisture were minimal. Increased water uptake by eggs under relatively wet conditions resulted in larger hatchlings with less internalized residual yolk than hatchlings from dry‐incubated eggs. However, the relatively small phenotypic differences among treatments may have small fitness consequences. These results demonstrate that embryos of A. sagrei can tolerate a broad range of environmental conditions without substantial impacts on critical morphological traits. Such embryonic tolerances may facilitate colonization and establishment in novel environments. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 25–41.  相似文献   

19.
Development of the yolk sac of squamate reptiles (lizards and snakes) differs from other amniote lineages in the pattern of growth of extraembryonic mesoderm, which produces a cavity, the yolk cleft, within the yolk. The structure of the yolk cleft and the accompanying isolated yolk mass influence development of the allantois and chorioallantoic membrane. The yolk cleft of viviparous species of the Eugongylus group of scincid lizards is the foundation for an elaborate yolk sac placenta; development of the yolk cleft of oviparous species has not been studied. We used light microscopy to describe the yolk sac and chorioallantoic membrane in a developmental series of an oviparous member of this species group, Oligosoma lichenigerum. Topology of the extraembryonic membranes of late stage embryos differs from viviparous species as a result of differences in development of the yolk sac. The chorioallantoic membrane encircles the egg of O. lichenigerum but is confined to the embryonic hemisphere of the egg in viviparous species. Early development of the yolk cleft is similar for both modes of parity, but in contrast to viviparous species, the yolk cleft of O. lichenigerum is transformed into a tube‐like structure, which fills with cells. The yolk cleft originates as extraembryonic mesoderm is diverted from the periphery of the egg into the yolk sac cavity. As a result, a bilaminar omphalopleure persists over the abembryonic surface of the yolk. The bilaminar omphalopleure is ultimately displaced by intrusion of allantoic mesoderm between ectodermal and endodermal layers. The resulting chorioallantoic membrane has a similar structure but different developmental history to the chorioallantoic membrane of the embryonic hemisphere of the egg. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Embryos of the direct-developing frog Eleutherodactylus coqui take up small quantities of yolk and yolk mineral early in incubation but increase their uptake of yolk reserves at later stages of development. Growth and accumulation of calcium and magnesium by embryos also occur slowly at first and at a higher rate later. Accumulation of calcium and magnesium by embryos is largely a function of variation in size of embryos, but uptake of phosphorus is unrelated to size. Althrough patterns of growth and uptake of mineral by embryonic coquis resemble those for embryos of oviparous amniotes, embryonic coquis do not deplete the yolk of its nutrients to the same degree. Thus, residual yolk of coqui hatchlings contains a high percentage of the nutrient reserves originally present in the egg. This difference between embryonic coquis and embryos of oviparous amniotes may indicate that transfer of nutrients from yolk to embryo becomes limiting during the grwoth phase. Alternatively, some aspects of the neurologic system are so poorly developed at hatching that coqui may not be able to find prey effectively. A large nutrient reserve could sustain hatchling while the neurologic system continues to mature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号