首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Structural variation (SV) represents a significant, yet poorly understood contribution to an individual’s genetic makeup. Advanced next-generation sequencing technologies are widely used to discover such variations, but there is no single detection tool that is considered a community standard. In an attempt to fulfil this need, we developed an algorithm, SoftSearch, for discovering structural variant breakpoints in Illumina paired-end next-generation sequencing data. SoftSearch combines multiple strategies for detecting SV including split-read, discordant read-pair, and unmated pairs. Co-localized split-reads and discordant read pairs are used to refine the breakpoints.

Results

We developed and validated SoftSearch using real and synthetic datasets. SoftSearch’s key features are 1) not requiring secondary (or exhaustive primary) alignment, 2) portability into established sequencing workflows, and 3) is applicable to any DNA-sequencing experiment (e.g. whole genome, exome, custom capture, etc.). SoftSearch identifies breakpoints from a small number of soft-clipped bases from split reads and a few discordant read-pairs which on their own would not be sufficient to make an SV call.

Conclusions

We show that SoftSearch can identify more true SVs by combining multiple sequence features. SoftSearch was able to call clinically relevant SVs in the BRCA2 gene not reported by other tools while offering significantly improved overall performance.  相似文献   

2.

Background

Copy number variants (CNVs), including deletions, amplifications, and other rearrangements, are common in human and cancer genomes. Copy number data from array comparative genome hybridization (aCGH) and next-generation DNA sequencing is widely used to measure copy number variants. Comparison of copy number data from multiple individuals reveals recurrent variants. Typically, the interior of a recurrent CNV is examined for genes or other loci associated with a phenotype. However, in some cases, such as gene truncations and fusion genes, the target of variant lies at the boundary of the variant.

Results

We introduce Neighborhood Breakpoint Conservation (NBC), an algorithm for identifying rearrangement breakpoints that are highly conserved at the same locus in multiple individuals. NBC detects recurrent breakpoints at varying levels of resolution, including breakpoints whose location is exactly conserved and breakpoints whose location varies within a gene. NBC also identifies pairs of recurrent breakpoints such as those that result from fusion genes. We apply NBC to aCGH data from 36 primary prostate tumors and identify 12 novel rearrangements, one of which is the well-known TMPRSS2-ERG fusion gene. We also apply NBC to 227 glioblastoma tumors and predict 93 novel rearrangements which we further classify as gene truncations, germline structural variants, and fusion genes. A number of these variants involve the protein phosphatase PTPN12 suggesting that deregulation of PTPN12, via a variety of rearrangements, is common in glioblastoma.

Conclusions

We demonstrate that NBC is useful for detection of recurrent breakpoints resulting from copy number variants or other structural variants, and in particular identifies recurrent breakpoints that result in gene truncations or fusion genes. Software is available at http://http.//cs.brown.edu/people/braphael/software.html.  相似文献   

3.

Background

Many tools exist to predict structural variants (SVs), utilizing a variety of algorithms. However, they have largely been developed and tested on human germline or somatic (e.g. cancer) variation. It seems appropriate to exploit this wealth of technology available for humans also for other species. Objectives of this work included:
  1. Creating an automated, standardized pipeline for SV prediction.
  2. Identifying the best tool(s) for SV prediction through benchmarking.
  3. Providing a statistically sound method for merging SV calls.

Results

The SV-AUTOPILOT meta-tool platform is an automated pipeline for standardization of SV prediction and SV tool development in paired-end next-generation sequencing (NGS) analysis. SV-AUTOPILOT comes in the form of a virtual machine, which includes all datasets, tools and algorithms presented here. The virtual machine easily allows one to add, replace and update genomes, SV callers and post-processing routines and therefore provides an easy, out-of-the-box environment for complex SV discovery tasks. SV-AUTOPILOT was used to make a direct comparison between 7 popular SV tools on the Arabidopsis thaliana genome using the Landsberg (Ler) ecotype as a standardized dataset. Recall and precision measurements suggest that Pindel and Clever were the most adaptable to this dataset across all size ranges while Delly performed well for SVs larger than 250 nucleotides. A novel, statistically-sound merging process, which can control the false discovery rate, reduced the false positive rate on the Arabidopsis benchmark dataset used here by >60%.

Conclusion

SV-AUTOPILOT provides a meta-tool platform for future SV tool development and the benchmarking of tools on other genomes using a standardized pipeline. It optimizes detection of SVs in non-human genomes using statistically robust merging. The benchmarking in this study has demonstrated the power of 7 different SV tools for analyzing different size classes and types of structural variants. The optional merge feature enriches the call set and reduces false positives providing added benefit to researchers planning to validate SVs. SV-AUTOPILOT is a powerful, new meta-tool for biologists as well as SV tool developers.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1376-9) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Somatically acquired structure variations (SVs) and copy number variations (CNVs) can induce genetic changes that are directly related to tumor genesis. Somatic SV/CNV detection using next-generation sequencing (NGS) data still faces major challenges introduced by tumor sample characteristics, such as ploidy, heterogeneity, and purity. A simulated cancer genome with known SVs and CNVs can serve as a benchmark for evaluating the performance of existing somatic SV/CNV detection tools and developing new methods.

Results

SCNVSim is a tool for simulating somatic CNVs and structure variations SVs. Other than multiple types of SV and CNV events, the tool is capable of simulating important features related to tumor samples including aneuploidy, heterogeneity and purity.

Conclusions

SCNVSim generates the genomes of a cancer cell population with detailed information of copy number status, loss of heterozygosity (LOH), and event break points, which is essential for developing and evaluating somatic CNV and SV detection methods in cancer genomics studies.  相似文献   

5.

Background

Characterizing large genomic variants is essential to expanding the research and clinical applications of genome sequencing. While multiple data types and methods are available to detect these structural variants (SVs), they remain less characterized than smaller variants because of SV diversity, complexity, and size. These challenges are exacerbated by the experimental and computational demands of SV analysis. Here, we characterize the SV content of a personal genome with Parliament, a publicly available consensus SV-calling infrastructure that merges multiple data types and SV detection methods.

Results

We demonstrate Parliament’s efficacy via integrated analyses of data from whole-genome array comparative genomic hybridization, short-read next-generation sequencing, long-read (Pacific BioSciences RSII), long-insert (Illumina Nextera), and whole-genome architecture (BioNano Irys) data from the personal genome of a single subject (HS1011). From this genome, Parliament identified 31,007 genomic loci between 100 bp and 1 Mbp that are inconsistent with the hg19 reference assembly. Of these loci, 9,777 are supported as putative SVs by hybrid local assembly, long-read PacBio data, or multi-source heuristics. These SVs span 59 Mbp of the reference genome (1.8%) and include 3,801 events identified only with long-read data. The HS1011 data and complete Parliament infrastructure, including a BAM-to-SV workflow, are available on the cloud-based service DNAnexus.

Conclusions

HS1011 SV analysis reveals the limits and advantages of multiple sequencing technologies, specifically the impact of long-read SV discovery. With the full Parliament infrastructure, the HS1011 data constitute a public resource for novel SV discovery, software calibration, and personal genome structural variation analysis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1479-3) contains supplementary material, which is available to authorized users.  相似文献   

6.
Read-depths (RDs) are frequently used in identifying structural variants (SVs) from sequencing data. For existing RD-based SV callers, it is difficult for them to determine breakpoints in single-nucleotide resolution due to the noisiness of RD data and the bin-based calculation. In this paper, we propose to use the deep segmentation model UNet to learn base-wise RD patterns surrounding breakpoints of known SVs. We integrate model predictions with an RD-based SV caller to enhance breakpoints in single-nucleotide resolution. We show that UNet can be trained with a small amount of data and can be applied both in-sample and cross-sample. An enhancement pipeline named RDBKE significantly increases the number of SVs with more precise breakpoints on simulated and real data. The source code of RDBKE is freely available at https://github.com/yaozhong/deepIntraSV.  相似文献   

7.

Background

Generation of long (>5 Kb) DNA sequencing reads provides an approach for interrogation of complex regions in the human genome. Currently, large-insert whole genome sequencing (WGS) technologies from Pacific Biosciences (PacBio) enable analysis of chromosomal structural variations (SVs), but the cost to achieve the required sequence coverage across the entire human genome is high.

Results

We developed a method (termed PacBio-LITS) that combines oligonucleotide-based DNA target-capture enrichment technologies with PacBio large-insert library preparation to facilitate SV studies at specific chromosomal regions. PacBio-LITS provides deep sequence coverage at the specified sites at substantially reduced cost compared with PacBio WGS. The efficacy of PacBio-LITS is illustrated by delineating the breakpoint junctions of low copy repeat (LCR)-associated complex structural rearrangements on chr17p11.2 in patients diagnosed with Potocki–Lupski syndrome (PTLS; MIM#610883). We successfully identified previously determined breakpoint junctions in three PTLS cases, and also were able to discover novel junctions in repetitive sequences, including LCR-mediated breakpoints. The new information has enabled us to propose mechanisms for formation of these structural variants.

Conclusions

The new method leverages the cost efficiency of targeted capture-sequencing as well as the mappability and scaffolding capabilities of long sequencing reads generated by the PacBio platform. It is therefore suitable for studying complex SVs, especially those involving LCRs, inversions, and the generation of chimeric Alu elements at the breakpoints. Other genomic research applications, such as haplotype phasing and small insertion and deletion validation could also benefit from this technology.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1370-2) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

To gain biological insights into lung metastases from hepatocellular carcinoma (HCC), we compared the whole-genome sequencing profiles of primary HCC and paired lung metastases.

Methods

We used whole-genome sequencing at 33X-43X coverage to profile somatic mutations in primary HCC (HBV+) and metachronous lung metastases (> 2 years interval).

Results

In total, 5,027-13,961 and 5,275-12,624 somatic single-nucleotide variants (SNVs) were detected in primary HCC and lung metastases, respectively. Generally, 38.88-78.49% of SNVs detected in metastases were present in primary tumors. We identified 65–221 structural variations (SVs) in primary tumors and 60–232 SVs in metastases. Comparison of these SVs shows very similar and largely overlapped mutated segments between primary and metastatic tumors. Copy number alterations between primary and metastatic pairs were also found to be closely related. Together, these preservations in genomic profiles from liver primary tumors to metachronous lung metastases indicate that the genomic features during tumorigenesis may be retained during metastasis.

Conclusions

We found very similar genomic alterations between primary and metastatic tumors, with a few mutations found specifically in lung metastases, which may explain the clinical observation that both primary and metastatic tumors are usually sensitive or resistant to the same systemic treatments.  相似文献   

9.

Background

Genomic deletions, inversions, and other rearrangements known collectively as structural variations (SVs) are implicated in many human disorders. Technologies for sequencing DNA provide a potentially rich source of information in which to detect breakpoints of structural variations at base-pair resolution. However, accurate prediction of SVs remains challenging, and existing informatics tools predict rearrangements with significant rates of false positives or negatives.

Results

To address this challenge, we developed ‘Structural Variation detection by STAck and Tail’ (SV-STAT) which implements a novel scoring metric. The software uses this statistic to quantify evidence for structural variation in genomic regions suspected of harboring rearrangements. To demonstrate SV-STAT, we used targeted and genome-wide approaches. First, we applied a custom capture array followed by Roche/454 and SV-STAT to three pediatric B-lineage acute lymphoblastic leukemias, identifying five structural variations joining known and novel breakpoint regions. Next, we detected SVs genome-wide in paired-end Illumina data collected from additional tumor samples. SV-STAT showed predictive accuracy as high as or higher than leading alternatives. The software is freely available under the terms of the GNU General Public License version 3 at https://gitorious.org/svstat/svstat.

Conclusions

SV-STAT works across multiple sequencing chemistries, paired and single-end technologies, targeted or whole-genome strategies, and it complements existing SV-detection software. The method is a significant advance towards accurate detection and genotyping of genomic rearrangements from DNA sequencing data.
  相似文献   

10.

Background

We recently described Hi-Plex, a highly multiplexed PCR-based target-enrichment system for massively parallel sequencing (MPS), which allows the uniform definition of library size so that subsequent paired-end sequencing can achieve complete overlap of read pairs. Variant calling from Hi-Plex-derived datasets can thus rely on the identification of variants appearing in both reads of read-pairs, permitting stringent filtering of sequencing chemistry-induced errors. These principles underly ROVER software (derived from Read Overlap PCR-MPS variant caller), which we have recently used to report the screening for genetic mutations in the breast cancer predisposition gene PALB2. Here, we describe the algorithms underlying ROVER and its usage.

Results

ROVER enables users to quickly and accurately identify genetic variants from PCR-targeted, overlapping paired-end MPS datasets. The open-source availability of the software and threshold tailorability enables broad access for a range of PCR-MPS users.

Methods

ROVER is implemented in Python and runs on all popular POSIX-like operating systems (Linux, OS X). The software accepts a tab-delimited text file listing the coordinates of the target-specific primers used for targeted enrichment based on a specified genome-build. It also accepts aligned sequence files resulting from mapping to the same genome-build. ROVER identifies the amplicon a given read-pair represents and removes the primer sequences by using the mapping co-ordinates and primer co-ordinates. It considers overlapping read-pairs with respect to primer-intervening sequence. Only when a variant is observed in both reads of a read-pair does the signal contribute to a tally of read-pairs containing or not containing the variant. A user-defined threshold informs the minimum number of, and proportion of, read-pairs a variant must be observed in for a ‘call’ to be made. ROVER also reports the depth of coverage across amplicons to facilitate the identification of any regions that may require further screening.

Conclusions

ROVER can facilitate rapid and accurate genetic variant calling for a broad range of PCR-MPS users.  相似文献   

11.

Background

Deviations in the amount of genomic content that arise during tumorigenesis, called copy number alterations, are structural rearrangements that can critically affect gene expression patterns. Additionally, copy number alteration profiles allow insight into cancer discrimination, progression and complexity. On data obtained from high-throughput sequencing, improving quality through GC bias correction and keeping false positives to a minimum help build reliable copy number alteration profiles.

Results

We introduce seqCNA, a parallelized R package for an integral copy number analysis of high-throughput sequencing cancer data. The package includes novel methodology on (i) filtering, reducing false positives, and (ii) GC content correction, improving copy number profile quality, especially under great read coverage and high correlation between GC content and copy number. Adequate analysis steps are automatically chosen based on availability of paired-end mapping, matched normal samples and genome annotation.

Conclusions

seqCNA, available through Bioconductor, provides accurate copy number predictions in tumoural data, thanks to the extensive filtering and better GC bias correction, while providing an integrated and parallelized workflow.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-178) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.

Background

Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA) and structural variants (SVs). Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood. This study aimed to perform a systematic analysis of genes that are affected by CNA-associated chromosomal breaks in colorectal cancer (CRC) and to determine the clinical relevance of recurrent breakpoint genes.

Methods

Primary CRC samples of patients with metastatic disease from CAIRO and CAIRO2 clinical trials were previously characterized by array-comparative genomic hybridization. These data were now used to determine the prevalence of CNA-associated chromosomal breaks within genes across 352 CRC samples. In addition, mutation status of the commonly affected APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS genes was determined for 204 CRC samples by targeted massive parallel sequencing. Clinical relevance was assessed upon stratification of patients based on gene mutations and gene breakpoints that were observed in >3% of CRC cases.

Results

In total, 748 genes were identified that were recurrently affected by chromosomal breaks (FDR <0.1). MACROD2 was affected in 41% of CRC samples and another 169 genes showed breakpoints in >3% of cases, indicating that prevalence of gene breakpoints is comparable to the prevalence of well-known gene point mutations. Patient stratification based on gene breakpoints and point mutations revealed one CRC subtype with very poor prognosis.

Conclusions

We conclude that CNA-associated chromosomal breaks within genes represent a highly prevalent and clinically relevant subset of SVs in CRC.  相似文献   

14.
15.

Aims

This study investigates how burrow-nesting, colonial seabirds structure the spatial patterns of soil and plant properties (including soil and leaf N) and tests whether burrow density drives these spatial patterns within each of six individual islands that vary greatly in burrow density.

Methods

Within individual islands, we compared semivariograms (SVs) with and without burrows as a spatial trend. We also used SVs to describe and compare the spatial patterns among islands for each of 16 soil and plant variables.

Results

Burrow density within a single island was only important in determining spatial structuring in one-fifth of the island-variable combinations tested. Among islands, some variables (i.e., soil pH, δ15N, and compaction; microbial biomass and activity) achieved peak spatial variance on intermediate-density islands, while others (i.e., net ammonification, net nitrification, NH4 +, NO3 -) became increasingly variable on densely burrowed islands.

Conclusions

Burrow density at the within-island scale was far less important than expected. Seabirds and other ecosystem engineers whose activities (e.g., nutrient subsidies, soil disturbance) influence multiple spatial scales can increase spatial heterogeneity even at high densities, inconsistent with a “hump-shaped” relationship between resource availability and heterogeneity.  相似文献   

16.
Next-generation sequencing (NGS) technologies have revolutionised the analysis of genomic structural variants (SVs), providing significant insights into SV de novo formation based on analyses of rearrangement breakpoint junctions. The short DNA reads generated by NGS, however, have also created novel obstacles by biasing the ascertainment of SVs, an aspect that we refer to as the 'short-read dilemma'. For example, recent studies have found that SVs are often complex, with SV formation generating large numbers of breakpoints in a single event (multi-breakpoint SVs) or structurally polymorphic loci having multiple allelic states (multi-allelic SVs). This complexity may be obscured in short reads, unless the data is analysed and interpreted within its wider genomic context. We discuss how novel approaches will help to overcome the short-read dilemma, and how integration of other sources of information, including the structure of chromatin, may help in the future to deepen the understanding of SV formation processes.  相似文献   

17.

Background

The detailed study of breakpoints associated with copy number variants (CNVs) can elucidate the mutational mechanisms that generate them and the comparison of breakpoints across species can highlight differences in genomic architecture that may lead to lineage-specific differences in patterns of CNVs. Here, we provide a detailed analysis of Drosophila CNV breakpoints and contrast it with similar analyses recently carried out for the human genome.

Results

By applying split-read methods to a total of 10x coverage of 454 shotgun sequence across nine lines of D. melanogaster and by re-examining a previously published dataset of CNVs detected using tiling arrays, we identified the precise breakpoints of more than 600 insertions, deletions, and duplications. Contrasting these CNVs with those found in humans showed that in both taxa CNV breakpoints fall into three classes: blunt breakpoints; simple breakpoints associated with microhomology; and breakpoints with additional nucleotides inserted/deleted and no microhomology. In both taxa CNV breakpoints are enriched with non-B DNA sequence structures, which may impair DNA replication and/or repair. However, in contrast to human genomes, non-allelic homologous-recombination (NAHR) plays a negligible role in CNV formation in Drosophila. In flies, non-homologous repair mechanisms are responsible for simple, recurrent, and complex CNVs, including insertions of de novo sequence as large as 60 bp.

Conclusions

Humans and Drosophila differ considerably in the importance of homology-based mechanisms for the formation of CNVs, likely as a consequence of the differences in the abundance and distribution of both segmental duplications and transposable elements between the two genomes.  相似文献   

18.

Background

The discovery and mapping of genomic variants is an essential step in most analysis done using sequencing reads. There are a number of mature software packages and associated pipelines that can identify single nucleotide polymorphisms (SNPs) with a high degree of concordance. However, the same cannot be said for tools that are used to identify the other types of variants. Indels represent the second most frequent class of variants in the human genome, after single nucleotide polymorphisms. The reliable detection of indels is still a challenging problem, especially for variants that are longer than a few bases.

Results

We have developed a set of algorithms and heuristics collectively called indelMINER to identify indels from whole genome resequencing datasets using paired-end reads. indelMINER uses a split-read approach to identify the precise breakpoints for indels of size less than a user specified threshold, and supplements that with a paired-end approach to identify larger variants that are frequently missed with the split-read approach. We use simulated and real datasets to show that an implementation of the algorithm performs favorably when compared to several existing tools.

Conclusions

indelMINER can be used effectively to identify indels in whole-genome resequencing projects. The output is provided in the VCF format along with additional information about the variant, including information about its presence or absence in another sample. The source code and documentation for indelMINER can be freely downloaded from www.bx.psu.edu/miller_lab/indelMINER.tar.gz.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0483-6) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
Rare copy number variations (CNVs) generated by human genomic rearrangements have been shown to play an important role in pathogenesis of human diseases and cancers. CNV breakpoint analysis can help define genomic location, genetic content and sequence structure of pathogenic CNVs. This process is vital to elucidate CNV mutational mechanism and etiology of CNV-associated disorders. However, it is technically challenging to map CNV breakpoints at base-pair level, especially in the genomic regions with sequence complexity. In this study, we developed a new method of capture and breakpoint approaching sequencing (CBAS) to efficiently obtain CNV breakpoint sequences. This strategy is independent of CNV structures and applicable to various CNV types. As was demonstrated in CNV-associated patients with neurological disorders, CBAS achieved fine mapping of breakpoint sequences for compound deletion, complex duplication, and translocation. Intriguingly, CBAS also revealed unexpected CNV complexity involving long-range DNA rearrangement. Our observations showed that CBAS is an efficient method for obtaining CNV breakpoint sequence and mapping insertional events as well. This method can facilitate the researches on CNV-associated human diseases and cancers. CBAS is also applicable to mapping the integration sites of retrovirus (such as HIV) and transgenes in model organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号