首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diverse chemical and physical agents can alter cellular functions associated with oxidative metabolism, thus stimulating the production of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI) in planktonic bacterial physiology. However, more research is necessary to determine the precise role of cellular stress in biofilm. The present study was designed to address the issues of Staphylococcus aureus biofilm formation with respect to the generation of oxidative and nitrosative stress. We studied three pathogenic S. aureus clinical strains and an ATCC strain exposed to a different range of culture conditions (time, temperature, pH, reduction and atmospheric conditions) using quantitative methods of biofilm detection. We observed that cellular stress could be produced inside biofilms, thereby affecting their growth, resulting in an increase of ROS and RNI production, and a decrease of the extracellular matrix under unfavorable conditions. These radical oxidizers could then accumulate in an extracellular medium and thus affect the matrix. These results contribute to a better understanding of the processes that enable adherent biofilms to grow on inert surfaces and lead to an improved knowledge of ROS and RNI regulation, which may help to clarify the relevance of biofilm formation in medical devices.  相似文献   

2.
香芹酚抑制金黄色葡萄球菌生物被膜的形成   总被引:1,自引:0,他引:1  
【背景】生物被膜是细菌的一种自我保护形式,可以增强细菌对药物及宿主免疫应答的抵抗力,引起细菌耐药性和持续性感染。【目的】探究香芹酚对金黄色葡萄球菌生物被膜的作用机制,为开发新型抗生物被膜药物提供可靠的理论依据。【方法】通过结晶紫染色法检测香芹酚对供试菌株生物被膜形成的抑制和对成熟生物被膜的清除作用;使用刚果红平板法探究香芹酚对供试菌株生物被膜形成过程中细胞间多糖黏附素(polysaccharide intercellular adhesion,PIA)合成的作用;通过分光光度法检测香芹酚对胞外DNA (extracellular DNA,eDNA)分泌的抑制作用;利用RT-PCR技术检测香芹酚对供试菌株的生物被膜相关基因icaA、cidA和sarA转录水平的影响。【结果】香芹酚对生物被膜形成的抑制和生物被膜的清除均有较强作用效果。256μg/mL香芹酚抑制PIA合成和e DNA释放的效果显著。香芹酚可通过抑制相关基因转录从而抑制生物被膜的形成,当64μg/mL的香芹酚作用后,sarA的转录水平降低了60.44%±2.91%,cidA的转录水平降低了76.48%±1.67%,icaA的转...  相似文献   

3.
Lin MH  Shu JC  Huang HY  Cheng YC 《PloS one》2012,7(3):e34388
Staphylococcus aureus is a human pathogen that forms biofilm on catheters and medical implants. The authors' earlier study established that 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) inhibits biofilm formation by S. aureus by preventing the initial attachment of the cells to a solid surface and reducing the production of polysaccharide intercellular adhesin (PIA). Our cDNA microarray and MALDI-TOF mass spectrometric studies demonstrate that PGG treatment causes the expression of genes and proteins that are normally expressed under iron-limiting conditions. A chemical assay using ferrozine verifies that PGG is a strong iron chelator that depletes iron from the culture medium. This study finds that adding FeSO(4) to a medium that contains PGG restores the biofilm formation and the production of PIA by S. aureus SA113. The requirement of iron for biofilm formation by S. aureus SA113 can also be verified using a semi-defined medium, BM, that contains an iron chelating agent, 2, 2'-dipyridyl (2-DP). Similar to the effect of PGG, the addition of 2-DP to BM medium inhibits biofilm formation and adding FeSO(4) to BM medium that contains 2-DP restores biofilm formation. This study reveals an important mechanism of biofilm formation by S. aureus SA113.  相似文献   

4.
It is not known how Leptospira react to wound or a cut infected with microbes, such as pathogenic Staphylococcus, or their common habitat on oral or nasal mucosal membranes. In the present study, Staphylococcus aureus MTCC‐737 showed strong co‐aggregation with leptospiral strains (>75%, visual score of + 4) in vitro. All tested strains of Leptospira were able to form biofilm with S. aureus. Scanning electron microscopy analysis revealed intertwined networks of attached cells of L. interrogans and S. aureus, thus providing evidence of a matrix‐like structure. This phenomenon may have implications in Leptospira infection, which occurs via cuts and wounds of the skin.  相似文献   

5.
【背景】金黄色葡萄球菌是一种常见的食源性致病菌,易在食品及加工器具表面形成生物膜,引起食品腐败和疾病的传播,威胁食品安全。【目的】研究冬凌草甲素抑制金黄色葡萄球菌生物膜形成的作用机制。【方法】使用结晶紫染色法和扫描电镜观察冬凌草甲素对金黄色葡萄球菌生物膜形成的抑制作用,刚果红平板法定性检测冬凌草甲素对细胞间多糖黏附素(polysaccharideintercellular adhesion,PIA)合成的影响,分光光度法测定冬凌草甲素对供试菌株胞外DNA (eDNA)释放量的影响,RT-PCR技术检测冬凌草甲素对供试菌株ica A、cid A、agr A和sar A基因表达量的影响。【结果】冬凌草甲素对金黄色葡萄球菌生物膜形成有较强的抑制作用;冬凌草甲素能显著抑制PIA的合成,且呈浓度剂量依赖;冬凌草甲素能抑制供试菌株e DNA的释放量,其中1/4最小抑菌浓度(minimum inhibitory concentration,MIC)的冬凌草甲素作用金黄色葡萄球菌16 h后,与对照组相比,e DNA的释放量降低了48.62%;冬凌草甲素可显著抑制金黄色葡萄球菌生物膜形成相关基因的表达,其中1/2MIC的冬凌草甲素作用金黄色葡萄球菌16 h后,ica A、cid A、agr A和sar A基因的表达量分别比对照降低了91.6%、94.7%、77.6%和70.4%。【结论】冬凌草甲素通过抑制ica A和cid A基因的表达,影响PIA的合成和eDNA的释放,进而干预生物膜的形成。  相似文献   

6.
【目的】研究和厚朴酚(HNK)抑制MRSA生物被膜(BF)形成的作用机制。【方法】使用TTC法测定了HNK对供试菌株BF的形成和成熟BF的抑制作用;刚果红平板法定性检测了HNK对PIA合成的影响;分光光度法测定了HNK对供试菌株eDNA释放量的影响;RT-PCR技术检测了HNK对供试菌株icaA、cidA以及agrA基因表达量的影响。【结果】HNK对MRSA 41573 BF的形成和成熟BF均有较强的抑制作用,其中,HNK抑制MRSA 41573 BF形成的MIC和MBC分别为10μg/mL和20μg/mL;抑制成熟BF的MIC和MBC分别为50μg/mL和100μg/mL。当用亚抑菌浓度的HNK与万古霉素联合作用后,可显著提高成熟BF对万古霉素的敏感性。HNK能显著抑制PIA的合成,且呈浓度剂量依赖。HNK能抑制供试菌株eDNA的释放量,其中1/8 MIC的HNK作用供试菌株16 h后,与对照组相比,e DNA的释放量降低了28.3%。HNK可抑制供试菌株BF形成的相关基因,其中1/2 MIC的HNK作用供试菌株16 h后,与对照相比,icaA的表达量降低了59.1%,cidA的表达量降低了56%,agrA的表达量降低了72.3%。【结论】HNK能显著抑制MRSA 41573 BF的形成,其作用机制主要是通过抑制icaA和cidA基因表达量,影响PIA和eDNA的合成,进而抑制BF的形成。此外HNK也可通过调控细菌的QS系统影响BF的形成。  相似文献   

7.
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB) in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains, biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified in the spent media was secreted thermonuclease (Nuc). Considering reports that extracellular DNA (eDNA) is an important component of the biofilm matrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and displayed an enhanced biofilm-forming capacity, and the nuc mutant also accumulated more high molecular weight eDNA than the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation.  相似文献   

8.
Phage release from biofilm and planktonic Staphylococcus aureus cells   总被引:7,自引:0,他引:7  
The ability of pathogenic staphylococci to form biofilms facilitates colonization and the development of chronic infections. Therapy is hampered by the high tolerance of biofilms towards antibiotic treatment and the immune system. We found evidence that lysogenic Staphylococcus aureus cells in a biofilm and in planktonic cultures spontaneously release phages into their surroundings. Phages were detected over a much longer period in biofilm cultures than in planktonic supernatants because the latter were degraded by secreted proteases. Phage release in planktonic and biofilm cultures was artificially increased by adding mitomycin C. Two morphologically distinct phages in the S. aureus strain used in this work were observed by electron microscopy. We postulate that phage-release is a frequent event in biofilms. The resulting lysis of cells in a biofilm might promote the persistence and survival of the remaining cells, as they gain a nutrient reservoir from their dead and lysed neighboring cells. This might therefore be an early differentiation and apoptotic mechanism.  相似文献   

9.
10.
Recent progress in elucidating the role of the icaADBC-encoded polysaccharide intercellular adhesin (PIA) or polymeric N-acetyl-glucosamine (PNAG) in staphylococcal biofilm development has in turn contributed significantly to our understanding of the pathogenesis of device-related infections. Nevertheless, our understanding of how the ica locus and PIA/PNAG biosynthesis are regulated is far from complete and many questions remain. Moreover, beyond ica, evidence is now emerging for the existence of ica-independent biofilm mechanisms in both Staphylococcus aureus and Staphylococcus epidermidis. Teichoic acids, which are a major carbohydrate component of the S. epidermidis biofilm matrix and the major cell wall autolysin, play an important role in the primary attachment phase of biofilm development, whereas the cell surface biofilm-associated protein and accumulation-associated protein are capable of mediating intercellular accumulation. These findings raise the exciting prospect that other surface proteins, which typically function as antigenic determinants or in binding to extracellular matrix proteins, may also act as biofilm adhesins. Given the impressive array of surface proteins expressed by S. aureus and S. epidermidis, future research into their potential role in biofilm development either independent of PIA/PNAG or in cooperation with PIA/PNAG will be of particular interest.  相似文献   

11.
12.
13.
A medium (Brain Heart Infusion plus 10% human plasma) was developed, tested, and validated for growing Staphylococcus aureus biofilm in vitro. With this medium, S. aureus forms reproducible and robust biofilms in flow chambers under controlled shear flow and with increased viability recovery in static well plates.  相似文献   

14.
15.
Staphylococcus aureus is a common pathogen associated with nosocomial infections. It can persist in clinical settings and gain increased resistance to antimicrobial agents through biofilm formation. We have found that alpha-toxin, a secreted, multimeric, hemolytic toxin encoded by the hla gene, plays an integral role in biofilm formation. The hla mutant was unable to fully colonize plastic surfaces under both static and flow conditions. Based on microscopy studies, we propose that alpha-hemolysin is required for cell-to-cell interactions during biofilm formation.  相似文献   

16.
17.
18.
Biofilms are communities of cells held together by a self-produced extracellular matrix typically consisting of protein, exopolysaccharide, and often DNA. A natural signal for biofilm disassembly in Bacillus subtilis is certain D-amino acids, which are incorporated into the peptidoglycan and trigger the release of the protein component of the matrix. D-amino acids also prevent biofilm formation by the related Gram-positive bacterium Staphylococcus aureus. Here we employed fluorescence microscopy and confocal laser scanning microscopy to investigate how D-amino acids prevent biofilm formation by S. aureus. We report that biofilm formation takes place in two stages, initial attachment to surfaces, resulting in small foci, and the subsequent growth of the foci into large aggregates. D-amino acids did not prevent the initial surface attachment of cells but blocked the subsequent growth of the foci into larger assemblies of cells. Using protein- and polysaccharide-specific stains, we have shown that D-amino acids inhibited the accumulation of the protein component of the matrix but had little effect on exopolysaccharide production and localization within the biofilm. We conclude that D-amino acids act in an analogous manner to prevent biofilm development in B. subtilis and S. aureus. Finally, to investigate the potential utility of D-amino acids in preventing device-related infections, we have shown that surfaces impregnated with D-amino acids were effective in preventing biofilm growth.  相似文献   

19.
Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection.  相似文献   

20.
Staphylococcus aureus in rural drinking water.   总被引:6,自引:4,他引:2       下载免费PDF全文
Coagulase-positive Staphylococcus aureus was isolated from over 6% of 320 rural drinking water specimens. Well water was the most common source examined. The presence of S. aureus was not found to correlate with the presence of coliform bacteria. Strains of Staphylococcus that produced enterotoxin A were found in 40% of the samples containing S. aureus. Additional studies showed that faucet aerator screens were common sources of high cell densities of S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号