首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Two newborn Belgian Blue calves from a farm in the United Kingdom exhibited lateral recumbency, low head carriage and transient muscle spasms following tactile or auditory stimulation. DNA sequence analysis indicated that both calves were homozygous for the recessive congenital muscular dystonia type 2 (CMD2) mutation (c.809T>C, p.Leu270Pro) in SLC6A5, encoding the neuronal glycine transporter GlyT2. Further testing of animals from the index farm and a sample of Belgian Blue sires revealed an unexpectedly high frequency of CMD2 carriers. This implies that linked quantitative trait loci may be influencing the prevalence of CMD2 in the estimated 55,000 Belgian Blue cattle in the United Kingdom. We have therefore developed new inexpensive tests for the CMD2 allele that can be used to confirm diagnosis, identify carriers and guide future breeding strategy, thus avoiding animal distress/premature death and minimizing the future economic impact of this disorder.  相似文献   

2.
We herein describe the positional identification of a 2-bp deletion in the open reading frame of the MRC2 receptor causing the recessive Crooked Tail Syndrome in cattle. The resulting frame-shift reveals a premature stop codon that causes nonsense-mediated decay of the mutant messenger RNA, and the virtual absence of functional Endo180 protein in affected animals. Cases exhibit skeletal anomalies thought to result from impaired extracellular matrix remodeling during ossification, and as of yet unexplained muscular symptoms. We demonstrate that carrier status is very significantly associated with desired characteristics in the general population, including enhanced muscular development, and that the resulting heterozygote advantage caused a selective sweep which explains the unexpectedly high frequency (25%) of carriers in the Belgian Blue Cattle Breed.  相似文献   

3.
Belgian Blue cattle are known for their high degree of muscling and good carcass qualities. This high degree of muscling is mainly caused by a mutation in the myostatin gene (MSTN). Although the MSTN mutation is considered as fixed in the Belgian Blue breed, segregation is occurring in a sub-population bred for dual purpose. In the latter population, we observed an association between the mutation in MSTN and susceptibility to psoroptic mange, a skin disease caused by Psoroptes ovis mites that heavily plagues Belgian Blue cattle. In total, 291 animals were sampled and screened for their susceptibility for mange lesions and their MSTN genotype. Via linear mixed modelling, we observed that homozygous mutant animals had a significant increase in the size of mange lesions (+2.51% lesion extent) compared to homozygous wild type. These findings were confirmed with zero-inflated modelling, an animal model and odds analysis. Risk ratios for developing severe mange lesions were 5.9 times as high for homozygous mutant animals. All analyses confirmed an association between the MSTN genotype and psoroptic mange lesion size.  相似文献   

4.
We report the identification of a second loss-of-function mutation (c.1906T>C) in the bovine MRC2 gene causing the Crooked Tail Syndrome in Belgian Blue Cattle. We demonstrate that the ensuing substitution of the highly conserved Cysteine 636 with Arginine causes illegitimate receptor oligomerization, which is predicted to impair function of the MRC2 encoded protein, Endo180. We propose that this second MRC2 mutation was selected by breeders as a result of its favourable effect on muscularity in heterozygotes.  相似文献   

5.
6.
An 11-bp deletion in the bovine myostatin ( MSTN ) gene was identified as the causative mutation for the double-muscling phenotype in Belgian Blue and Asturiana cattle. More recently, this mutation was also identified in the South Devon breed of cattle, in which it has been found to be associated with a general increase in muscle mass. The present study found that the mutant allele was also segregating in a commercial population of Scottish Aberdeen Angus beef cattle. The mutation was found at a low frequency (0.04) with no animals homozygous for the mutation in the sample population (536 animals). The effects of this mutation on various carcass traits of economic interest were then tested. We found that the mutation significantly increased carcass weight, sirloin weight, hindquarter weight, muscle conformation score and eye muscle area, but had no effect on the fat traits.  相似文献   

7.
The Roan locus is responsible for the coat coloration of Belgian Blue and Shorthorn cattle. The solid-colored and white animals are homozygotes, and the roan animals, with intermingled colored and white hairs, are heterozygous. The roan phenotype was mapped to cattle Chromosome (Chr) 5 with microsatellites, and a candidate gene was proposed (Charlier et al. Mamm Genome 7, 138, 1996). PCR primers to the exons of this candidate gene, the steel locus or mast cell growth factor (MGF) were designed. Solid-colored and white animals were sequenced. A missense mutation at 654 bp (amino acid 193, Ala → Asp) was detected in these two groups. A PCR-RFLP was designed to this single base pair change, and 143 animals in total (Belgian Blue, Shorthorn, and various other breeds) were screened. In addition, the Canadian Beef Cattle Reference Herd (http://skyway.usask.ca/∼schmutz) was used to verify Mendelian inheritance of this marker with the phenotypic inheritance of roan. Our data suggest that this mutation in the bovine MGF gene is responsible for the roan phenotype. Received: 10 December 1998 / Accepted: 26 February 1998  相似文献   

8.
Genotyping by high-resolution melting analysis of small amplicons is homogeneous and simple. However, this approach can be limited by physical and chemical components of the system that contribute to intersample melting variation. It is challenging for this method to distinguish homozygous G::C from C::G or A::T from T::A base-pair neutral variants, which comprise approximately 16% of all human single nucleotide polymorphisms (SNPs). We used internal oligonucleotide calibrators and custom analysis software to improve small amplicon (42-86 bp) genotyping on the LightScanner. Three G/C (PAH c.1155C>G, CHK2 c.1-3850G>C and candidate gene BX647987 c.261+22,290C>G) and three T/A (CPS1 c.3405-29A>T, OTC c.299-8T>A and MSH2 c.1511-9A>T) human single nucleotide variants were analyzed. Calibration improved homozygote genotyping accuracy from 91.7 to 99.7% across 1105 amplicons from 141 samples for five of the six targets. The average T(m) standard deviations of these targets decreased from 0.067 degrees C before calibration to 0.022 degrees C after calibration. We were unable to generate a small amplicon that could discriminate the BX647987 c.261+22,290C>G (rs1869458) SNP, despite reducing standard deviations from 0.086 degrees C to 0.032 degrees C. Two of the sites contained symmetric nearest neighbors adjacent to the SNPs. Unexpectedly, we were able to distinguish these homozygotes by T(m) even though current nearest neighbor models predict that the two homozygous alleles would be identical.  相似文献   

9.
The most common monogenic form of obesity is caused by mutations in the gene encoding the melanocortin-4 receptor (MC4R). We have screened the MC4R coding sequence in 291 patients of a Dutch outpatient pediatric obesity clinic. We analyzed the minimal promoter region of the gene in a random subgroup of 217 children. Our aims were (i) to determine the frequency of MC4R mutations in a cohort of Dutch clinically obese children and (ii) to search for mutations in the promoter of the gene. Eleven MC4R coding variants were detected. Five children had mutations that have been shown to affect receptor function by other research groups (p.Y35X, p.I251fs, p.G231S). These children did not have earlier onset of obesity or higher BMI-SDS than the remainder of the cohort. One child had a novel nonsynonymous coding mutation (p.L304F). This variant showed a markedly decreased cell surface expression in in vitro experiments and is thus expected to be pathogenic. We detected 12 variants in the MC4R flanking regions. Five of these were not previously described (c.-1101C>T, c.-705A>T, c.-461A>G, c.-312T>C, c.-213A>G). We investigated these mutations by family studies and a bioinformatic approach. We conclude that rare heterozygous mutations in the coding sequence of MC4R account for some severe obesity cases in the Dutch population. These patients are difficult to recognize in a clinical setting. We generated a list of all MC4R variants that were described in the literature so far, which can aid the interpretation of mutations found in a diagnostic setting.  相似文献   

10.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 50 genes. Using homozygosity mapping in Ashkenazi Jewish (AJ) patients with autosomal-recessive RP (arRP), we identified a shared 1.7 Mb homozygous region on chromosome 1p36.11. Sequence analysis revealed a founder homozygous missense mutation, c.124A>G (p.Lys42Glu), in the dehydrodolichyl diphosphate synthase gene (DHDDS) in 20 AJ patients with RP of 15 unrelated families. The mutation was not identified in an additional set of 109 AJ patients with RP, in 20 AJ patients with other inherited retinal diseases, or in 70 patients with retinal degeneration of other ethnic origins. The mutation was found heterozygously in 1 out of 322 ethnically matched normal control individuals. RT-PCR analysis in 21 human tissues revealed ubiquitous expression of DHDDS. Immunohistochemical analysis of the human retina with anti-DHDDS antibodies revealed intense labeling of the cone and rod photoreceptor inner segments. Clinical manifestations of patients who are homozygous for the c.124A>G mutation were within the spectrum associated with arRP. Most patients had symptoms of night and peripheral vision loss, nondetectable electroretinographic responses, constriction of visual fields, and funduscopic hallmarks of retinal degeneration. DHDDS is a key enzyme in the pathway of dolichol, which plays an important role in N-glycosylation of many glycoproteins, including rhodopsin. Our results support a pivotal role of DHDDS in retinal function and may allow for new therapeutic interventions for RP.  相似文献   

11.
New DNA sequence polymorphisms were identified at four bovine autosomal loci: growth hormone, low density lipoprotein receptor, alpha-subunit of glycoprotein hormones and thyroglobulin. Assuming independent assortment between these polymorphisms, the probabilities to be heterozygous at these four loci are 0.48, 0.36, 0.10 and 0.77 respectively, within the Belgian Blue Cattle breed (BBCB). Nucleotide diversity was estimated, showing that animals from the BBCB are heterozygous for 1/1450 nucleotides, a value significantly lower than the 1/500 value found in man. Moreover, we have estimated that the mutation rate at the cytosines of CG dinucleotides is about 10 times higher than that for other nucleotides.  相似文献   

12.
Summary. New DNA sequence polymorphisms were identified at four bovine autosomal loci: growth hormone, low density lipoprotein receptor, α-subunit of glycoprotein hormones and thyroglobulin. Assuming independent assortment between these polymorphisms, the probabilities to be heterozygous at these four loci are 0.48, 0.36, 0.10 and 0.77 respectively, within the Belgian Blue Cattle breed (BBCB). Nucleotide diversity was estimated, showing that animals from the BBCB are heterozygous for 1/1450 nucleotides, a value significantly lower than the 1/500 value found in man. Moreover, we have estimated that the mutation rate at the cytosines of CG dinucleotides is about 10 times higher than that for other nucleotides.  相似文献   

13.

Background

Belgian Blue cattle are famous for their exceptional muscular development or “double-muscling”. This defining feature emerged following the fixation of a loss-of-function variant in the myostatin gene in the eighties. Since then, sustained selection has further increased muscle mass of Belgian Blue animals to a comparable extent. In the present paper, we study the genetic determinants of this second wave of muscle growth.

Results

A scan for selective sweeps did not reveal the recent fixation of another allele with major effect on muscularity. However, a genome-wide association study identified two genome-wide significant and three suggestive quantitative trait loci (QTL) affecting specific muscle groups and jointly explaining 8-21% of the heritability. The top two QTL are caused by presumably recent mutations on unique haplotypes that have rapidly risen in frequency in the population. While one appears on its way to fixation, the ascent of the other is compromised as the likely underlying MRC2 mutation causes crooked tail syndrome in homozygotes. Genomic prediction models indicate that the residual additive variance is largely polygenic.

Conclusions

Contrary to complex traits in humans which have a near-exclusive polygenic architecture, muscle mass in beef cattle (as other production traits under directional selection), appears to be controlled by (i) a handful of recent mutations with large effect that rapidly sweep through the population, and (ii) a large number of presumably older variants with very small effects that rise slowly in the population (polygenic adaptation).

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-796) contains supplementary material, which is available to authorized users.  相似文献   

14.
Work on Belgian Blue cattle revealed that an 11 base pair (bp) deletion within the bovine myostatin gene (GDF8) is associated with the double-muscled phenotype seen in this breed. Investigations focusing on other European breeds known to show double-muscling identified several mutations within the coding region of the gene associated with the double-muscled phenotype in different breeds. The number of mutations found suggest that myostatin is highly variable within beef cattle. Variations that alter the structure of the gene product such that the protein is inactivated are associated with the most pronounced form of double-muscling as seen in the Belgian Blue. However, other mutations may have a less extreme affect on muscle development. While overt double-muscling gives rise to a high incidence of dystocia (calving difficulty), it is possible that some variants may give enhanced muscling, but with limited calving problems. We describe sequence analysis of the myostatin gene in ten beef breeds commonly used in the UK and show that the 11-bp deletion responsible for double-muscling in the Belgian Blue is also present in the South Devon cattle population. Allele frequencies and haplotypes in the South Devon and a polymerase chain reaction (PCR) based test for the deletion are described. PCR amplification across the deleted region provides a quick and effective test with clear identification of heterozygous individuals. We discuss our results with regard to the effect of genotype on phenotype and differences observed between the Belgian Blue and the South Devon.  相似文献   

15.
16.
17.
Thrombospondin-1 plays an important role in cancer development and progression. This study investigated if a correlation exists between single-nucleotide polymorphisms (SNPs) in the Thrombospondin-1 gene (THBS1) and gastric cancer. We conducted a case-control study on a randomly recruited population of 283 patients and 283 healthy individuals from the city of Fuzhou in Southeast China. Individuals were genotyped for four SNPs (rs1478604 A>G, rs2228261 C>T, rs2292305 T>C, and rs3743125 C>T) in THBS1 using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. THBS1 genotypic distributions between the case and control groups were tested for correlations with cancer development. Comparisons between the case and control groups showed no significant differences in the genotypic distributions of rs1478604 A>G, rs2228261 C>T, and rs3743125 C>T. However, we found a statistically significant association between homozygous CC of THBS1 rs2292305 T>C and development of highly differentiated carcinoma (HDC). The rs1478604 A>G variant was found to be associated with invasion and lymph node metastasis in gastric cancer. After logistic regression and stratification analysis, rs1478604 A>G was more strongly associated with lymph node metastasis in HDC gastric cancer. The power to detect an effect for rs1478604 A>G in HDC was 90%. These findings indicate that the THBS1 rs1478604 A>G variant is linked with differential risks for gastric cancer nodal metastasis. These results support further investigation of THBS1 as a potential therapeutic target in gastric cancer.  相似文献   

18.
Zhang B  Ren J  Yan X  Huang X  Ji H  Peng Q  Zhang Z  Huang L 《Animal genetics》2008,39(3):258-266
Enterotoxigenic Escherichia coli (ETEC) F4ab and F4ac are major determinants of piglet diarrhoea. The locus for the ETEC F4ab/ac receptor has been mapped to SSC13q41. MUC13 is a transmembrane mucin expressed predominantly in the epithelial surface of the gastrointestinal tract and the MUC13 gene was assigned to SSC13q41, supporting it as a positional candidate gene for the ETEC F4ab/ac receptor. We herein determined the complete 2679-bp cDNA of pig MUC13, and proved that it was most highly expressed in the jejunum and moderately expressed in the trachea, stomach and liver. Furthermore, 13 MUC13 polymorphisms were identified in 19 founder animals of a White Duroc x Erhualian resource population, and a total of 727 F(2) animals with in vitro ETEC F4ab/ac adhesion phenotypes in this population were genotyped for three identified MUC13 polymorphisms including c.576C>T, c.908A>G and c.935A>C. The transmission disequilibrium test showed that the MUC13 alleles and haplotypes were significantly associated with susceptibility/resistance to ETEC F4ab/ac, especially between haplotype [C;G;A] and susceptibility to ETEC F4ac (P = 8.0e-18). Animals inheriting this haplotype were predominantly susceptible to ETEC F4ac (n = 291/303). Moreover, nearly all animals homozygous for haplotype [T;G;C] (n = 39/41) and a majority of those with the [C;A;A]/[T;G;C] haplotype pair (n = 79/88) were resistant to ETEC F4ab. Our results indicated that MUC13 is in strong linkage disequilibrium with the ETEC F4ab/ac receptor locus and provided potential markers for selection of ETEC F4ab/ac-resistant animals in the pig breeding scheme.  相似文献   

19.
20.

Background

Cattle populations are characterized by regular outburst of genetic defects as a result of the extensive use of elite sires. The causative genes and mutations can nowadays be rapidly identified by means of genome-wide association studies combined with next generation DNA sequencing, provided that the causative mutations are conventional loss-of-function variants. We show in this work how the combined use of next generation DNA and RNA sequencing allows for the rapid identification of otherwise difficult to identify splice-site variants.

Results

We report the use of haplotype-based association mapping to identify a locus on bovine chromosome 10 that underlies autosomal recessive arthrogryposis in Belgian Blue Cattle. We identify 31 candidate mutations by resequencing the genome of four cases and 15 controls at ~10-fold depth. By analyzing RNA-Seq data from a carrier fetus, we observe skipping of the second exon of the PIGH gene, which we confirm by RT-PCR to be fully penetrant in tissues from affected calves. We identify - amongst the 31 candidate variants - a C-to-G transversion in the first intron of the PIGH gene (c211-10C > G) that is predicted to affect its acceptor splice-site. The resulting PIGH protein is likely to be non-functional as it lacks essential domains, and hence to cause arthrogryposis.

Conclusions

This work illustrates how the growing arsenal of genome exploration tools continues to accelerate the identification of an even broader range of disease causing mutations, therefore improving the management and control of genetic defects in livestock.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1528-y) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号