首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The evolution of communal roosting in birds: origin and secondary losses   总被引:6,自引:2,他引:4  
Beauchamp  Guy 《Behavioral ecology》1999,10(6):675-687
Three main benefits are thought to underlie communal roostingin birds: a reduction in thermoregulation demands, a decreasein predation risk, and an increase in foraging efficiency. Iinvestigated interspecific variation in communal roosting tendenciesacross categories of several ecological factors to examine therelevance of each functional hypothesis in the evolutionary transitionto communal roosting and the secondary reversal to solitary roostinghabits. The study phylogenetic tree included 30 families and437 species. Evolutionary transitions to communal roosting occurredmore often on branches with flocking species and with largerspecies but were not associated with diet, territoriality, geographicalarea, or time of day. The association with flocking activitiessuggests that increased foraging efficiency, a factor thoughtto operate through the formation of flocks, may have been akey factor in the origin of avian communal roosting. However,several transitions to communal roosting occurred on brancheswith nonflocking species, indicating that foraging efficiencymay not be the only factor involved in the evolution of communalroosting. Secondary losses of communal roosting habits occurredon several branches, with a concomitant loss of flocking behaviorand a tendency to exhibit territorial behavior and nocturnalforaging. Secondary losses suggest that communal roosting iscostly to perform and maintain and may be lost when an asocialselection regime operates. The large number of exceptions tothe above patterns may force a reevaluation of current functional hypothesesabout communal roosting in birds.  相似文献   

2.
Hybridization has the potential to transfer beneficial alleles across species boundaries, and there are a growing number of examples in which this has apparently occurred. Recent studies suggest that Heliconius butterflies have transferred wing pattern mimicry alleles between species via hybridization, but ancestral polymorphism could also produce a signature of shared ancestry around mimicry genes. To distinguish between these alternative hypotheses, we measured DNA sequence divergence around putatively introgressed mimicry loci and compared this with the rest of the genome. Our results reveal that putatively introgressed regions show strongly reduced sequence divergence between co-mimetic species, suggesting that their divergence times are younger than the rest of the genome. This is consistent with introgression and not ancestral variation. We further show that this signature of introgression occurs at sites throughout the genome, not just around mimicry genes.  相似文献   

3.
The comimetic Heliconius butterfly species pair, H. erato and H. melpomene, appear to use a conserved Mendelian switch locus to generate their matching red wing patterns. Here we investigate whether H. cydno and H. pachinus, species closely related to H. melpomene, use this same switch locus to generate their highly divergent red and brown color pattern elements. Using an F2 intercross between H. cydno and H. pachinus, we first map the genomic positions of two novel red/brown wing pattern elements; the G locus, which controls the presence of red vs brown at the base of the ventral wings, and the Br locus, which controls the presence vs absence of a brown oval pattern on the ventral hind wing. The results reveal that the G locus is tightly linked to markers in the genomic interval that controls red wing pattern elements of H. erato and H. melpomene. Br is on the same linkage group but approximately 26 cM away. Next, we analyze fine-scale patterns of genetic differentiation and linkage disequilibrium throughout the G locus candidate interval in H. cydno, H. pachinus and H. melpomene, and find evidence for elevated differentiation between H. cydno and H. pachinus, but no localized signature of association. Overall, these results indicate that the G locus maps to the same interval as the locus controlling red patterning in H. melpomene and H. erato. This, in turn, suggests that the genes controlling red pattern elements may be homologous across Heliconius, supporting the hypothesis that Heliconius butterflies use a limited suite of conserved genetic switch loci to generate both convergent and divergent wing patterns.  相似文献   

4.
5.
A long-standing question in ecology is whether phenotypic plasticity, rather than selection per se, is responsible for phenotypic variation among populations. Plasticity can increase or decrease variation, but most previous studies have been limited to single populations, single traits and a small number of environments assessed using univariate reaction norms. Here, examining two genetically distinct populations of Daphnia pulex with different predation histories, we quantified predator-induced plasticity among 11 traits along a fine-scale gradient of predation risk by a predator (Chaoborus) common to both populations. We test the hypothesis that plasticity can be responsible for convergence in phenotypes among different populations by experimentally characterizing multivariate reaction norms with phenotypic trajectory analysis (PTA). Univariate analyses showed that all genotypes increased age and size at maturity, and invested in defensive spikes (neckteeth), but failed to quantitatively describe whole-organism response. In contrast, PTA quantified and qualified the phenotypic strategy the organism mobilized against the selection pressure. We demonstrate, at the whole-organism level, that the two populations occupy different areas of phenotypic space in the absence of predation but converge in phenotypic space as predation threat increases.  相似文献   

6.
For prey animals to negotiate successfully the fundamental trade-off between predation and starvation, a realistic assessment of predation risk is vital. Prey responses to conspicuous indicators of risk (such as looming predators or fleeing conspecifics) are well documented, but there should also be strong selection for the detection of more subtle cues. A predator's head orientation and eye-gaze direction are good candidates for subtle but useful indicators of risk, since many predators orient their head and eyes towards their prey as they attack. We describe the first explicit demonstration of a bird responding to a live predator's eye-gaze direction. We present wild-caught European starlings (Sturnus vulgaris) with human 'predators' whose frontal appearance and gaze direction are manipulated independently, and show that starlings are sensitive to the predator's orientation, the presence of eyes and the direction of eye-gaze. Starlings respond in a functionally significant manner: when the predator's gaze was averted, starlings resumed feeding earlier, at a higher rate and consumed more food overall. By correctly assessing lower risk and returning to feeding activity earlier (as in this study), the animal gains a competitive advantage over conspecifics that do not respond to the subtle predator cue in this way.  相似文献   

7.
Most research on the effects of exposure to stressful stimuli during embryonic development has focused on post-embryonic behaviour that appears to be abnormal or maladaptive. Here, we tested whether exposure to some stressful stimuli (predatory cues) can lead to post-embryonic behaviour that is adaptive. When eggs of ringed salamanders (Ambystoma annulatum) were exposed to chemical cues from predators, post-hatching larvae showed reduced activity and greater shelter-seeking behaviour; larvae that had been exposed to control cues did not show these behaviours. In addition, wood frog (Rana sylvatica)tadpoles learned to respond to chemical cues from unfamiliar predators with danger based on embryonic conditioning. Therefore, if embryonic experience is a good predictor of future risk, learning associated with exposure to negative stimuli during development may be adaptive.  相似文献   

8.
A small or sparse population may suffer a reduction in fitness owing to Allee effects. Here, we explored effects of plant density on pollination, reproduction and predation in the alpine herb Pedicularis rex over two years. We did not detect a significant difference in the pollination rate or fecundity (fruit set and the initial seed set) before predation between sparse and dense patches in either year, indicating no pollination-driven Allee effect. However, dense patches experienced significantly fewer attacks by predispersal seed predators in both years, resulting in a significantly decreased realized fecundity (final seed set), suggesting a component Allee effect driven by predispersal seed predation. Predation-driven Allee effects have been predicted by many models and demonstrated for a range of animals, but there is scant evidence for such effects in plants. Our study provides strong evidence of a component Allee effect driven by predation in a plant species.  相似文献   

9.
Although the brain is known to be a very plastic organ, the effects of common ecological interactions like predation or competition on brain development have remained largely unexplored. We reared nine-spined sticklebacks (Pungitius pungitius) from two coastal marine (predation-adapted) and two isolated pond (competition-adapted) populations in a factorial experiment, manipulating perceived predatory risk and food supply to see (i) if the treatments affected brain development and (ii) if there was population differentiation in the response to treatments. We detected differences in plasticity of the bulbus olfactorius (chemosensory centre) between habitats: marine fish were not plastic, whereas pond fish had larger bulbi olfactorii in the presence of perceived predation. Marine fish had larger bulbus olfactorius overall. Irrespective of population origin, the hypothalamus was smaller in the presence of perceived predatory risk. Our results demonstrate that perceived predation risk can influence brain development, and that the effect of an environmental factor on brain development may depend on the evolutionary history of a given population in respect to this environmental factor.  相似文献   

10.
Partial migration, in which a fraction of a population migrate and the rest remain resident, occurs in an extensive range of species and can have powerful ecological consequences. The question of what drives differences in individual migratory tendency is a contentious one. It has been shown that the timing of partial migration is based upon a trade-off between seasonal fluctuations in predation risk and growth potential. Phenotypic variation in either individual predation risk or growth potential should thus mediate the strength of the trade-off and ultimately predict patterns of partial migration at the individual level (i.e. which individuals migrate and which remain resident). We provide cross-population empirical support for the importance of one component of this model--individual predation risk--in predicting partial migration in wild populations of bream Abramis brama, a freshwater fish. Smaller, high-risk individuals migrate with a higher probability than larger, low-risk individuals, and we suggest that predation risk maintains size-dependent partial migration in this system.  相似文献   

11.
Horizontal gene transfer by conjugative plasmids plays a critical role in the evolution of antibiotic resistance. Interactions between bacteria and other organisms can affect the persistence and spread of conjugative plasmids. Here we show that protozoan predation increased the persistence and spread of the antibiotic resistance plasmid RP4 in populations of the opportunist bacterial pathogen Serratia marcescens. A conjugation-defective mutant plasmid was unable to survive under predation, suggesting that conjugative transfer is required for plasmid persistence under the realistic condition of predation. These results indicate that multi-trophic interactions can affect the maintenance of conjugative plasmids with implications for bacterial evolution and the spread of antibiotic resistance genes.  相似文献   

12.
13.
14.
15.
Mass-dependent predation risk and lethal dolphin-porpoise interactions   总被引:1,自引:0,他引:1  
In small birds, mass-dependent predation risk (MDPR) is known to make the trade-off between avoiding starvation and avoiding predation dependent on individual mass. This occurs because carrying increased fat reserves not only reduces starvation risk but also results in a higher predation risk due to reduced escape flight performance and/or the increased foraging exposure needed to maintain a higher body mass. In principle, the theory of MDPR could also apply to any animal capable of storing energy reserves to reduce starvation and whose escape performance decreases with increasing mass. We used a unique situation along certain parts of coastal Britain, where harbour porpoises (Phocoena phocoena) are pursued and killed but crucially not eaten by bottlenose dolphins (Tursiops truncatus), to investigate whether a MDPR effect can occur in non-avian species. We show that where high levels of dolphin 'predation' occur, porpoises carry significantly less energy reserves than would otherwise be expected and this equates to reducing by approximately 37% the length of time that a porpoise could survive without feeding. These results provide the first evidence that a mass-dependent starvation-predation risk trade-off may be a general ecological principle that can apply to widely different animal types rather than, as is currently thought, only to birds.  相似文献   

16.
Melanin production is often considered costly, yet beneficial for thermoregulation. Studies of variation in melanization and the opposing selective forces that underlie its variability contribute greatly to understanding natural selection. We investigated whether melanization benefits are traded off with predation risk to promote observed local and geographical variation in the warning signal of adult male wood tiger moths (Parasemia plantaginis). Warning signal variation is predicted to reduce survival in aposematic species. However, in P. plantaginis, male hindwings are either yellow or white in Europe, and show continuous variation in melanized markings that cover 20 to 90 per cent of the hindwing. We found that the amount of melanization increased from 40 to 59 per cent between Estonia (58° N) and north Finland (67° N), suggesting melanization carries thermoregulatory benefits. Our thermal measurements showed that more melanic individuals warmed up more quickly on average than less melanic individuals, which probably benefits flight in cold temperatures. With extensive field experiments in central Finland and the Alpine region, we found that more melanic individuals suffered increased predation. Together, our data suggest that warning signal efficiency is constrained by thermoregulatory benefits. Differences in relative costs and benefits of melanin probably help to maintain the geographical warning signal differences.  相似文献   

17.
Body size differences can impact the strength and type of interaction among and within species. This study examines the effect of body size differences on intraguild predation (IGP) and cannibalism in regulating the relative abundance of two species of temperate marine amphipods throughout a season. Intraguild predation was asymmetrical, with primarily Jassa marmorata preying on Apocorophium acutum (with little predation by A. acutum on J. marmorata). Intraguild predation increased significantly as body size difference increased. Cannibalism in J. marmorata was only significant among individuals of different body sizes. Tube building by A. acutum was also found to be effective in protecting against IGP, especially in the presence of large J. marmorata. Experimental results suggest an ontogenetic niche shift occurs in J. marmorata, which may provide a potential explanation for observed patterns of abundance in a natural population.  相似文献   

18.
The challenges of maintaining cohesion while making collective decisions in social or aggregating insects can result in the emergence of a leader or leaders. Larval aggregations of the steel-blue sawfly Perga affinis forage nocturnally, and some larvae lead the aggregation on foraging trips more often than expected by chance. We investigated the relationship between these leader and follower roles by comparing the weight and growth of individual larvae with different roles. Our observations reveal no significant difference between the growth of leaders and followers, suggesting that the role of leadership may not provide direct foraging benefits. However, by experimentally manipulating the social structure of larval aggregations, we found that individuals within aggregations that comprise a mixture of leaders and followers enjoy higher growth rates than those in aggregations comprising a single behavioural type. These data demonstrate, for the first time, individual benefits to maintaining a balance of leader and follower roles within larval aggregations, and highlight the importance of considering the perspectives of both leaders and followers when investigating the evolutionary significance of this behavioural variation within animal groups.  相似文献   

19.
L M Cook  I J Saccheri 《Heredity》2013,110(3):207-212
From the outset multiple causes have been suggested for changes in melanic gene frequency in the peppered moth Biston betularia and other industrial melanic moths. These have included higher intrinsic fitness of melanic forms and selective predation for camouflage. The possible existence and origin of heterozygote advantage has been debated. From the 1950s, as a result of experimental evidence, selective predation became the favoured explanation and is undoubtedly the major factor driving the frequency change. However, modelling and monitoring of declining melanic frequencies since the 1970s indicate either that migration rates are much higher than existing direct estimates suggested or else, or in addition, non-visual selection has a role. Recent molecular work on genetics has revealed that the melanic (carbonaria) allele had a single origin in Britain, and that the locus is orthologous to a major wing patterning locus in Heliconius butterflies. New methods of analysis should supply further information on the melanic system and on migration that will complete our understanding of this important example of rapid evolution.  相似文献   

20.
Interspecific hybridization occurs regularly in wild Heliconius butterflies, although hybrid individuals are usually very rare. However, hybridization generally occurs only between the most closely related species. We report a rare naturally occurring hybrid between non-sister species and carry out the first genetic analysis of such distant hybridization. Mitochondrial and nuclear genes indicate that the specimen is an F1 hybrid between a female Heliconius ethilla and a male Heliconius melpomene, originating from a group of 13 species estimated to have diverged over 2.5 Myr ago. The presence of such distant natural hybrids, together with evidence for backcrossing, suggests that gene flow across species boundaries can take place long after speciation. Adaptive genes such as those involved in wing coloration could thus be widely shared among members of this highly mimetic genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号