首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Ucar D  Hu Q  Tan K 《Nucleic acids research》2011,39(10):4063-4075
Chromatin modifications, such as post-translational modification of histone proteins and incorporation of histone variants, play an important role in regulating gene expression. Joint analyses of multiple histone modification maps are starting to reveal combinatorial patterns of modifications that are associated with functional DNA elements, providing support to the 'histone code' hypothesis. However, due to the lack of analytical methods, only a small number of chromatin modification patterns have been discovered so far. Here, we introduce a scalable subspace clustering algorithm, coherent and shifted bicluster identification (CoSBI), to exhaustively identify the set of combinatorial modification patterns across a given epigenome. Performance comparisons demonstrate that CoSBI can generate biclusters with higher intra-cluster coherency and biological relevance. We apply our algorithm to a compendium of 39 genome-wide chromatin modification maps in human CD4(+) T cells. We identify 843 combinatorial patterns that recur at >0.1% of the genome. A total of 19 chromatin modifications are observed in the combinatorial patterns, 10 of which occur in more than half of the patterns. We also identify combinatorial modification signatures for eight classes of functional DNA elements. Application of CoSBI to epigenome maps of different cells and developmental stages will aid in understanding how chromatin structure helps regulate gene expression.  相似文献   

3.
Histone modifications play a crucial role in regulating gene expression and cell lineage determination and maintenance at the epigenetic level. To systematically investigate this phenomenon, this paper presented a statistical hybrid clustering algorithm to identify common combinatorial histone modification patterns. We applied the algorithm to 39 histone modification marks in human CD4 + T cells and detected 854 common combinatorial histone modification patterns. Our results could cover 211 (76.17%) patterns among 277 patterns identified by the tandem mass spectrometry experiments. Based on the frequency statistical analysis, it was found that the co-occurrence frequencies of 20 backbone modifications are greater than or close to 0.2 in the 854 patterns. we also found that 15 modifications (H2BK120ac, H4K91ac, H2BK20ac, etc.), three histone acetylations (H2AK9ac, H4K16ac, and H4K12ac) and five histone methylations (H3K79me1, H3K79me2, 3K79me3, H4K20me1, and H2BK5me1) were most likely prone to coexist respectively in these patterns. In addition, we found that DNA methylation tends to combine with histone acetylation rather than histone methylation.  相似文献   

4.
Systematic analysis of histone modifications has revealed a plethora of posttranslational modifications that mediate changes in chromatin structure and gene expression. Histone phosphorylation is a transient histone modification that becomes induced by extracellular signals, DNA damage or entry into mitosis. Importantly, phosphorylation of histone proteins does lead not only to the binding of specific reader proteins but also to changes in the affinity for readers or writers of other histone modifications. This induces a cross-talk between different chromatin modifications that allows the spatio-temporal control of chromatin-associated events. In this review we will summarize the progress in our current knowledge of factors sensing reversible histone phosphorylation in different biological scenarios. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.  相似文献   

5.
6.
Proper regulation of genome architecture and activity is essential for the development and function of multicellular organisms. Histone modifications, acting in combination, specify these activity states at individual genomic loci. However, the methods used to study these modifications often require either a large number of cells or are limited to targeting one histone mark at a time. Here, we developed a new method called Single Cell Evaluation of Post-TRanslational Epigenetic Encoding (SCEPTRE) that uses Expansion Microscopy (ExM) to visualize and quantify multiple histone modifications at non-repetitive genomic regions in single cells at a spatial resolution of ∼75 nm. Using SCEPTRE, we distinguished multiple histone modifications at a single housekeeping gene, quantified histone modification levels at multiple developmentally-regulated genes in individual cells, and evaluated the relationship between histone modifications and RNA polymerase II loading at individual loci. We find extensive variability in epigenetic states between individual gene loci hidden from current population-averaged measurements. These findings establish SCEPTRE as a new technique for multiplexed detection of combinatorial chromatin states at single genomic loci in single cells.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Post-translational histone modifications regulate epigenetic switching between different chromatin states. Distinct histone modifications, such as acetylation, methylation and phosphorylation, define different functional chromatin domains, and often do so in a combinatorial fashion. The centromere is a unique chromosomal locus that mediates multiple segregation functions, including kinetochore formation, spindle-mediated movements, sister cohesion and a mitotic checkpoint. Centromeric (CEN) chromatin is embedded in heterochromatin and contains blocks of histone H3 nucleosomes interspersed with blocks of CENP-A nucleosomes, the histone H3 variant that provides a structural and functional foundation for the kinetochore. Here, we demonstrate that the spectrum of histone modifications present in human and Drosophila melanogaster CEN chromatin is distinct from that of both euchromatin and flanking heterochromatin. We speculate that this distinct modification pattern contributes to the unique domain organization and three-dimensional structure of centromeric regions, and/or to the epigenetic information that determines centromere identity.  相似文献   

15.
Histones are the fundamental structural proteins intimately associated with eukaryotic DNA to form a highly ordered and condensed nucleoproteic complex termed chromatin. They are the targets of various posttranslational modifications including acetylation, methylation, phosphorylation and ubiquitination that modulate the structure/function of chromatin. The combinatorial nature of histone modifications is hypothesized to define a "histone code" that considerably extends the information potential of the genetic code, giving rise to epigenetic information. Moreover, most core histones consist of several nonallelic variants that can mark specific loci and could play an important role in establishment and maintenance of epigenetic memory. Here we will briefly present our current knowledge about histone posttranslational modifications and their implications in the regulation of epigenetic information. We will next describe core histone variants, insisting on their mode of incorporation into chromatin to discuss their epigenetic function and inheritance.  相似文献   

16.
The term epigenetics is defined as inheritable changes that influence the outcome of a phenotype without changes in the genome. Epigenetics is based upon DNA methylation and posttranslational histone modifications. While there is much known about reversible acetylation as a posttranslational modification, research on reversible histone methylation is still emerging, especially with regard to drug discovery. As aberrant epigenetic modifications have been linked to many diseases, inhibitors of histone modifying enzymes are very much in demand. This article will summarize the progress on small molecule epigenetic inhibitors identified by structure- and computer-based approaches.  相似文献   

17.
Cellular memory and the histone code   总被引:65,自引:0,他引:65  
Turner BM 《Cell》2002,111(3):285-291
The histone tails on the nucleosome surface are subject to enzyme-catalyzed modifications that may, singly or in combination, form a code specifying patterns of gene expression. Recent papers provide insights into how a combinatorial code might be set and read. They show how modification of one residue can influence that of another, even when they are located on different histones, and how modifications at specific genomic locations might be perpetuated on newly assembled chromatin.  相似文献   

18.
The regulatory role of histone modifications with respect to the structure and function of chromatin is well known. Proteins and protein complexes establishing, erasing and binding these marks have been extensively studied. RNAs have only recently entered the picture of epigenetic regulation with the discovery of a vast number of long non-coding RNAs. Fast growing evidence suggests that such RNAs influence all aspects of histone modification biology. Here, we focus exclusively on the emerging functional interplay between RNAs and proteins that bind histone modifications. We discuss recent findings of reciprocally positive and negative regulations as well as summarize the current insights into the molecular mechanism directing these interactions. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.  相似文献   

19.
Histone modifications: from genome-wide maps to functional insights   总被引:1,自引:0,他引:1  
A large number of histone modifications has been implicated in the regulation of gene expression. Together, these modifications have the potential to form a complex combinatorial regulatory code. Genome-wide mapping approaches provide new opportunities to decipher this code, but they may suffer from systematic biases. Integration of datasets and improved technologies will provide the way forward.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号