首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chromosomes in eukaryotic cell nuclei are not uniformly organized, but rather contain distinct chromatin elements, with each state having a defined biochemical structure and biological function. These are recognizable by their distinct architectures and molecular components, which can change in response to cellular stimuli or metabolic requirements. Chromatin elements are characterized by the fundamental histone and DNA components, as well as other associated non-histone proteins and factors. Post-translational modifications of histone proteins in particular often correlate with a specific chromatin structure and function. Patterns of histone modifications are implicated as having a role in directing the level of chromatin compaction, as well as playing roles in multiple functional pathways directing the readout of distinct regions of the genome. We review the properties of various chromatin elements and the apparent links of histone modifications with chromatin organization and functional output.  相似文献   

3.
4.
The effect of histone acetylation was monitored on CHO chromatin structure, following the addition of 7 mM Na-butyrate to the cell culture medium. The properties of both control and hyperacetylated chromatins and nuclei were investigated by circular dichroism, ethidium bromide intercalation, differential scanning calorimetry, and affinity chromatography. Our results are compatible with modest but significant alterations in the various levels of chromatin organization, as a result of the charge neutralization of some lysine residues within the N-terminal region of the histonic octamer. Namely, large statistically significant differences do exist in the heat capacity thermograms of native nuclei, where unfolding into single nucleofilament of the highly packed native chromatin superfiber appears associated with acetylation; at the same time CD, EB, and affinity chromatography point to modest but consistent differences in the compactness of isolated nucleosomes and polynucleosomes. J. Cell. Biochem. 64:466–475. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Reconstitution of the 30 nm filament of chromatin from pure histone H5 and chromatin depleted of H1 and H5 has been studied using small-angle neutron-scattering. We find that depleted, or stripped, chromatin is saturated by H5 at the same stoichiometry as that of linker histone in native chromatin. The structure and condensation behavior of fully reconstituted chromatin is indistinguishable from that of native chromatin. Both native and reconstituted chromatin condense continuously as a function of salt concentration, to reach a limiting structure that has a mass per unit length of 6.4 nucleosomes per 11 nm. Stripped chromatin at all ionic strengths appears to be a 10 nm filament, or a random coil of nucleosomes. In contrast, both native and reconstituted chromatin have a quite different structure, showing that H5 imposes a spatial correlation between neighboring nucleosomes even at low ionic strength. Our data also suggest that five to seven contiguous nucleosomes must have H5 bound in order to be able to form a higher-order structure.  相似文献   

6.
Qualmann B  Koch D  Kessels MM 《The EMBO journal》2011,30(17):3501-3515
Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved.  相似文献   

7.
Aspects pertaining to linker histone structure and function are discussed, including the extent to which these proteins are essential, their ability to regulate specific gene expression, and recent structural data that provides a potential molecular basis for understanding how linker histones can have both repressive and stimulatory effects on genomic functions in vivo.  相似文献   

8.
The heat denaturation and renaturation curves of rat liver and ascites hepatoma (AH 108A) chromatins were measured. In these renaturation curves, there are small sigmoidal regions. These sigmoidal regions remained in redenaturation curves and were largely stable to DNAase I digestion. When the chromatins were treated stepwise with NaClO4 and lysine-rich histones were removed, the sigmoidal regions in the renaturation curves disappeared. These results suggested that the sigmoidal regions reflected the interaction of DNA and lysine-rich histones.  相似文献   

9.
10.
11.
Bustin M  Catez F  Lim JH 《Molecular cell》2005,17(5):617-620
Over 80% of the nucleosomes in chromatin contain histone H1, a protein family known to affect the structure and activity of chromatin. Genetic studies and in vivo imaging experiments are changing the traditional view of H1 function and mechanism of action. H1 variants are partially redundant, mobile molecules that interact with nucleosomes as members of a dynamic protein network and serve as fine tuners of chromatin function.  相似文献   

12.
Influence of histone H1 on chromatin structure   总被引:31,自引:0,他引:31  
F Thoma  T Koller 《Cell》1977,12(1):101-107
Removal of histone H1 produces a transition in the structure of chromatin fibers as observed by electron microscopy. Chromatin containing all histone proteins appears as fibers with a diameter of about 250 A. The nucleosomes within these fibers are closely packed. If histone H1 is selectively removed with 50-100 mM NaCl in 50 mM sodium phosphate buffer (pH 7.0) in the presence of the ion-exchange resin AG 50 W - X2, chromatin appears as "beads-on-a-string" with the nucleosomes separated from each other by distances of about 150-200 A. If chromatin is treated in the presence of the resin with NaCl at concentrations of 650 mM or more, the structural organization of the chromatin is decreased, yielding fibers of irregular appearance.  相似文献   

13.
Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.  相似文献   

14.
15.
The mode of fragmentation of chromatin by micrococcal nuclease has been studied in nuclei from different sources at physiological ionic strength and low temperature. During digestion, the size of chromatin was reduced until an average S value of 95–100 (hen erythrocyte) or 60–65 (rat liver) was attained. The accumulation of these structures correlated with the period of maximum solubility (80%), indicating that the bulk of chromatin behaved in this manner. Further digestion did not result in a corresponding decrease in S value but in a bimodal sedimentation pattern. As opposed to this behavior, chromatin containing actively acetylated core histones showed a continuous variation in size during the digestion. Indirect immunoprecipitation of chromatin by anti-H5 antibody and sheep anti-rabbit antibody revealed that the acetylated chromatin is partially depleted of H5.  相似文献   

16.
17.
Cellular memory and the histone code   总被引:65,自引:0,他引:65  
Turner BM 《Cell》2002,111(3):285-291
The histone tails on the nucleosome surface are subject to enzyme-catalyzed modifications that may, singly or in combination, form a code specifying patterns of gene expression. Recent papers provide insights into how a combinatorial code might be set and read. They show how modification of one residue can influence that of another, even when they are located on different histones, and how modifications at specific genomic locations might be perpetuated on newly assembled chromatin.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号