首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Safronova LD  Kudriavtsev IV 《Genetika》2001,37(9):1198-1206
Mouse t-complex located on chromosome 17 contains genes affecting solely male fertility. Some genes of this complex are recessive lethals; nonetheless, the high frequency of the t-complex carriers in a population is maintained due to a mechanism referred to as transmission ratio distortion (TRD), i.e., after crosses with wild-type females, males heterozygous for the t-complex transmit the t-bearing chromosome to nearly all their offspring, which suggests that the t-complex genes control sperm function. Analysis of this phenomenon shows that the resultant TRD is determined by the ratio between the distorter genes (Tcd) and a responder gene (Tcr) located within the t-complex region. Many authors believe that two to six distorter genes currently known have an additive effect. A genetic model of the non-Mendelian inheritance in the progeny of heterozygous male mice specifically explains sterility of animals carrying the t-complex with complementary lethal genes. The model suggests that some distorter gene products interacting with the responder gene have a selective effect on motility of both mutant and wild-type sperm. Insufficient sperm motility and/or their unsuccessful capacitation result in poor if any fertilization. Information on the t-complex genes is necessary for understanding the biological mechanisms of male sterility and may be used in medical practice.  相似文献   

2.
3.
Transmission ratio distortion is a dramatic example of non-Mendelian transmission. In mice, t-haplotype males produce dysfunctional +-sperm and normal t-sperm, leading to transmission in favor of t-sperm. Genetic studies have indicated that the t-complex responder locus, Tcr, rescues t-sperm but not +-sperm from defective products of t-complex distorter loci, Tcds. Light chain 1 (LC1) and LC3 from sea urchin sperm outer arm dynein have sequence similarities to Tctex2 and Tctex1, respectively, both of which are wild-type products of Tcds. We show here that LC1 and LC3 are able to make a 1:1 complex. Since Tcr is a member of the Smok (sperm motility kinase) family and LC1 is phosphorylated at the activation of sperm motility in a cAMP-dependent manner, this complex in a dynein motor molecule might be a direct target of Smok/Tcr kinase in a signal cascade that regulates sperm motility. Thus, we designate it as Smoac (sperm motility activating complex).  相似文献   

4.
The t haplotype is an ancestral version of proximal mouse chromosome 17 that has evolved mechanisms to persist as an intact genomic variant in mouse populations. t haplotypes contain mutations that affect embryonic development, male fertility and male transmission ratio distortion (TRD). Collectively, these mutations drive the evolutionary success of t haplotypes, a phenomenon that remains one of the longstanding mysteries of mouse genetics. Molecular genetic analysis of TRD has been confounded by inversions that arose to lock together the various elements of this complex trait. Our first molecular glimpse of the TRD mechanism has finally been revealed with the cloning of the t complex responder (Tcr) locus, a chimeric kinase with a genetically cis active effect. Whereas + sperm in a +/t male have impaired flagellar function caused by the deleterious action of trans-active, t-haplotype-encoded 'distorters,' the mutant activity of Tcr counterbalances the distorter effects, maintaining the motility and fertilizing ability of t sperm.  相似文献   

5.
An allele of the mouse brachyury locus, T22H, had been shown previously to involve a deletion of several markers in the proximal part of chromosome 17, and almost certainly includes deletion of the t-complex distorter gene Tcd-1. The effects of T22H on transmission ratio distortion and male sterility caused by the t-complex were compared with those of a partial t-haplotype th51, which carries the t-form of the distorter Tcd-1t. In combination with the complete haplotype tw32, T22H caused severe impairment of male fertility, but males of genotype T22H/t6 or T22H/th51 were normally fertile. These results were very similar to those obtained when th51 was in combination with the same haplotypes. In effect on transmission ratio T22H was again similar to th51, in that it produced a marked increase in the transmission of the haplotype t6. To test whether the effects of T22H were due to deletion of elements other than Tcd-1, the effect of T22H on transmission of the partial haplotype th2 was compared with that of the deletion Thp. Again T22H markedly increased transmission of the t-haplotype and the effect was significantly greater than the small effect produced by Thp. It is concluded that deletion of the distorter Tcd-1 has an effect like that of the t-form of this distorter, Tcd-1t, and hence that Tcd-1t must be an amorph or hypomorph. It is speculated that other t-complex distorters, Tcd-2t and Tcd-3t, may also be amorphs or hypomorphs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Planchart A  You Y  Schimenti JC 《Genetics》2000,155(2):803-812
The t complex spans 20 cM of the proximal region of mouse chromosome 17. A variant form, the t haplotype (t), exists at significant frequencies in wild mouse populations and is characterized by the presence of inversions that suppress recombination with wild-type (+) chromosomes. Transmission ratio distortion and sterility are associated with t and affect males only. It is hypothesized that these phenomena are caused by trans-acting distorter/sterility factors that interact with a responder locus (Tcr(t)) and that the distorter and sterility factors are the same because homozygosity of the distorters causes male sterility. One factor, Tcd1, was previously shown to be amorphic using a chromosome deletion. To overcome limitations imposed by recombination suppression, we used a series of deletions within the t complex in trans to t chromosomes to characterize the Tcd1 region. We find that the distorter activity of Tcd1 is distinct from a linked sterility factor, originally called tcs1. YACs mapped with respect to deletion breakpoints localize tcs1 to a 1.1-Mb interval flanked by D17Aus9 and Tctex1. We present evidence for the existence of multiple proximal t complex regions that exhibit distorter activity. These studies demonstrate the utility of chromosome deletions for complex trait analysis.  相似文献   

7.
8.
M F Lyon 《Cell》1986,44(2):357-363
Evidence is presented that the male sterility produced by the mouse t-complex is due to interaction of at least three sterility factors. These factors are carried in the same partial haplotypes as the three distorter genes, Tcd-1, Tcd-2, and Tcd-3 and are suggested to be identical with them. When heterozygous, the distorter/sterility genes act on the wild-type form of the responder gene, rendering sperm carrying it nonfunctional, thus leading to high transmission of the t form of the responder. When homozygous, the harmful effects of the distorter genes are stronger and affect both forms of the responder, leading to sterility. If homozygous sterility is an inescapable part of ratio distortion, then the t-lethals confer a selective advantage in removing sterile males from the population. Thus, the relationship between the various properties of the t-complex can now be understood.  相似文献   

9.
Mouse t-complex located on chromosome 17 contains genes affecting only male fertility. Some genes of this complex are recessive lethals; nonetheless, the high frequency of the t-complex carriers in a population is maintained due to a mechanism referred to as transmission ratio distortion (TRD), i.e., after crosses with wild-type females, males heterozygous for the t-complex transmit the t-bearing chromosome to nearly all their offspring, which suggests that the t-complex genes control sperm function. Analysis of this phenomenon shows that the resultant TRD is determined by the ratio between the distorter genes (Tcd) and a responder gene (Tcr) located within the t-complex region. Many authors believe that two to six distorter genes currently known have an additive effect. A genetic model of the non-Mendelian inheritance in the progeny of heterozygous male mice specifically explains sterility of animals carrying the t-complex with complementary lethal genes. The model suggests that some distorter gene products interacting with the responder gene have a selective effect on motility of both mutant and wild-type sperm. Insufficient sperm motility and/or their unsuccessful capacitation result in poor if any fertilization. Information on the t-complex genes is necessary for understanding the biological mechanisms of male sterility and may be used in medical practice.  相似文献   

10.
Mary F. Lyon 《Cell》1984,37(2):621-628
Transmission ratios of male mice heterozygous for various combinations of partial t-haplotypes provide evidence in support of a model for the genetic basis of ratio distortion, involving two or more distorter genes acting on a responder locus. The t form of the responder locus, Tcr, in the medial part of the haplotype, must be present and heterozygous for distortion to occur. When the responder alone is present, as in tlow haplotypes, the chromosome carrying it is transmitted in a low ratio (<50%). The t forms of the distorter loci act additively, in cis or trans, to raise the transmission of whichever chromosome carries Tcr. Identified distorter loci are Tcd-1, in the proximal part of the haplotype, Tcd-2, distal to Tcr, and probably Tcd-3, lying between Tcr and Tcd-2. In the absence of Tcr the distorters are transmitted normally. The system is compared with the SD system of Drosophila.  相似文献   

11.
Search for differences among t haplotypes in distorter and responder genes   总被引:1,自引:0,他引:1  
Transmission ratio distortion due to the mouse t complex is though to be due to harmful effects of trans-acting distorter genes acting on a responder, with the t complex form of the responder being relatively resistant to this harmful action of the distorters. Previous work had indicated that naturally occurring t haplotypes differed in their responders or in distorters lying near the responder, with the result that animals doubly heterozygous for two responder-carrying haplotypes transmitted these haplotypes unequally. In the present work t haplotypes could be divided into three types on the basis of their transmission when doubly heterozygous with the responder-carrying partial haplotype tlowH. The majority, t0, t6, tw1, tw2 and tw73, were transmitted equally with tlowH, a second group, including tw5 and two haplotypes derived from it, were transmitted less frequently than tlowH, and the single member of a third group, tw32, was transmitted in excess of tlowH. This last result suggests that the underlying differences are in the responder itself, rather than in the distorters. Search for differences among t haplotypes in distorters produced some equivocal results possibly resulting from effects of genetic background. In particular, results of others suggesting presence of a fourth distorter, Tcd-4, were not confirmed.  相似文献   

12.
Abstract Segregation distorters are selfish genetic elements that bias Mendelian segregation in their favor. All well-known segregation distortion systems consist of one or more "distorter" loci that act upon a "responder" locus. At the t complex of the house mouse, segregation distortion is brought about by the harmful effect of t alleles at a number of distorter loci on the wild-type variant of the responder locus. The responder and distorter alleles are closely linked by a number of inversions, thus forming a coherent t haplotype. It has been conjectured that the close integration of the various components into a "complete" t haplotype has been crucial for the evolutionary success of these selfish genetic elements. By means of a population genetical metapopulation model, we show that this intuition may be unfounded. In fact, under most circumstances an "insensitive" t haplotype retaining only the responder did invade and reach a high frequency, despite the fact that this haplotype has a strong segregation disadvantage. For certain population structures, the complete t haplotype was even competitively excluded by partial t haplotypes with lower segregation ratios. Moreover, t haplotypes carrying one or more recessive lethals only prevailed over their nonlethal counterparts if the product of local population size and migration rate ( Nm ) was not much smaller or larger than one. These phenomena occurred for rather realistic fitness, segregation, and recombination values. It is therefore quite puzzling that partial t haplotypes are absent from natural house mousepopulations, and that t haplotypes carrying recessive lethals prevail over nonlethal t haplotypes.  相似文献   

13.
Transmission ratio distortion (TRD) associated with mouse t haplotypes causes +/t males to transmit the t-bearing chromosome to nearly all their offspring. Of the several genes involved in this phenomenon, the t complex responder (Tcr(t)) locus is absolutely essential for TRD to occur. A candidate Tcr(t) gene called Tcp10b(t) was previously cloned from the genetically defined Tcr(t) region. Its location, restricted expression in testis, and a unique postmeiotic alternative splicing pattern supported the idea that Tcp10b(t) was Tcr(t). To test this hypothesis in a functional assay, ES cells were derived from a viable partial t haplotype, and the Tcp10b(t) gene was mutated by homologous recombination. Mutant mice were mated to appropriate partial t haplotypes to determine whether the targeted chromosome exhibited transmission ratios characteristic of the responder. The results demonstrated that the targeted chromosome retained full responder activity. Hence, Tcp10b(t) does not appear to be Tcr(t). These and other observations necessitate a reevaluation of genetic mapping data and the actual nature of the responder.  相似文献   

14.
Although mouse t haplotypes carry recessive mutations causing male sterility and embryonic lethality, they persist in wild mouse populations via male transmission ratio distortion (TRD). Genetic evidence suggests that at least five t-haplotype-encoded loci combine to cause TRD. One of these loci, called the t complex responder (Tcr), is absolutely required for any deviation from Mendelian segregation to occur. A candidate for the Tcr gene has previously been identified. Evidence that this gene represents Tcr is its localization to the appropriate genomic subregion and testis-specific expression pattern. Here, we report the molecular cloning of the region between recombinant chromosome breakpoints defining the Tcr locus. These results circumscribe Tcr to a 150- to 220-kb region of DNA, including the 22-kb candidate responder gene. This gene and two other homologs were created by large genomic duplications, each involving segments of DNA 10-fold larger than the individual genes.  相似文献   

15.
Lyon MF  Schimenti JC  Evans EP 《Genetics》2000,155(2):793-801
Previously a deletion in mouse chromosome 17, T(22H), was shown to behave like a t allele of the t complex distorter gene Tcd1, and this was attributed to deletion of this locus. Seven further deletions are studied here, with the aim of narrowing the critical region in which Tcd1 must lie. One deletion, T(30H), together with three others, T(31H), T(33H), and T(36H), which extended more proximally, caused male sterility when heterozygous with a complete t haplotype and also enhanced transmission ratio of the partial t haplotype t(6), and this was attributed to deletion of the Tcd1 locus. The deletions T(29H), T(32H), and T(34H) that extended less proximally than T(30H) permitted male fertility when opposite a complete t haplotype. These results enabled narrowing of the critical interval for Tcd1 to between the markers D17Mit164 and D17Leh48. In addition, T(29H) and T(32H) enhanced the transmission ratio of t(6), but significantly less so than T(30H). T(34H) had no effect on transmission ratio. These results could be explained by a new distorter located between the breakpoints of T(29H) and T(34H) (between T and D17Leh66E). It is suggested that the original distorter Tcd1 in fact consists of two loci: Tcd1a, lying between D17Mit164 and D17Leh48, and Tcd1b, lying between T and D17Leh66E.  相似文献   

16.
Maternal sex ratio distorters (MSDs) are selfish elements that enhance their transmission by biasing their host's sex allocation in favor of females. While previous models have predicted that the female‐biased populations resulting from sex ratio distortion can benefit from enhanced productivity, these models neglect Fisherian selection for nuclear suppressors, an unrealistic assumption in most systems. We used individual‐based computer simulation modeling to explore the intragenomic conflict between sex ratio distorters and their suppressors and explored the impacts of these dynamics on population‐level competition between species characterized by MSDs and those lacking them. The conflict between distorters and suppressors was capable of producing large cyclical fluctuations in the population sex ratio and reproductive rate. Despite fitness costs associated with the distorters and suppressors, MSD populations often exhibited enhanced productivity and outcompeted non‐MSD populations in single and multiple‐population competition simulations. Notably, the conflict itself is beneficial to the success of populations, as sex ratio oscillations limit the competitive deficits associated with prolonged periods of male rarity. Although intragenomic conflict has been historically viewed as deleterious to populations, our results suggest that distorter–suppressor conflict can provide population‐level advantages, potentially helping to explain the persistence of sex ratio distorters in a range of taxa.  相似文献   

17.
18.
19.
20.
An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from natural populations of Mus musculus. A meiotic drive favouring the aberrant chromosome was previously demonstrated for heterozygous females. The cause for this was the preferential passage of the chromosome 1 to the oocyte. Genetic analysis made it possible to identify a two-component system conditioning the deviation from equal segregation of the homologues. The system consists of the postulated distorter and a responder. The distorter is located on the chromosome 1 distally to the responder, between the 1n and Pep 3 genes, the former acting on the responder when in the trans position. Polymorphism of the distorters was manifested as variation in their effect on the meiotic drive level in the laboratory strain and mice from natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号