首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pneumonia virus of mice (PVM) is a natural pathogen of mice and has been proposed as a tractable model for the replication of a pneumovirus in its natural host, which mimics human infection with human respiratory syncytial virus (RSV). PVM infection in mice is highly productive in terms of virus production compared with the situation seen with RSV in mice. Because RSV suppresses CD8 T cell effector function in the lungs of infected mice, we have investigated the nature of PVM-induced CD8 T cell responses to study pneumovirus-induced T cell responses in a natural virus-host setting. PVM infection was associated with a massive influx of activated CD8 T cells into the lungs. After identification of three PVM-specific CD8 T cell epitopes, pulmonary CD8 T cell responses were enumerated. The combined frequency of cytokine-secreting CD8 T cells specific for the three epitopes was much smaller than the total number of activated CD8 T cells. Furthermore, quantitation of the CD8 T cell response against one of these epitopes (residues 261-270 from the phosphoprotein) by MHC class I pentamer staining and by in vitro stimulation followed by intracellular IFN-gamma and TNF-alpha staining indicated that the majority of pulmonary CD8 specific for the P261 epitope were deficient in cytokine production. This deficient phenotype was retained up to 96 days postinfection, similar to the situation in the lungs of human RSV-infected mice. The data suggest that PVM suppresses T cell effector functions in the lungs.  相似文献   

2.
Respiratory syncytial virus (RSV) infection is one of the major causes of respiratory tract infection for which no vaccine or antiviral treatment is available. The RSV NS1 protein seems to antagonize the host interferon (IFN) response; however, its mechanism is unknown. Here, we used a plasmid-borne small interfering RNA targeting the NS1 gene (siNS1) to examine the role of NS1 in modulating RSV infection. RSV replication was reduced in A549 cells, but not IFN-deficient Vero cells, transfected with siNS1. siNS1 induced upregulated expression of IFN-beta and IFN-inducible genes in A549 cells. siNS1-transfected human dendritic cells, upon RSV infection, produced elevated type-1 IFN and induced differentiation of naive CD4+ T cells to T helper type 1 (TH1) cells. Mice treated intranasally with siNS1 nanoparticles before or after infection with RSV showed substantially decreased virus titers in the lung and decreased inflammation and airway reactivity compared to controls. Thus, siNS1 nanoparticles may provide an effective inhibition of RSV infection in humans.  相似文献   

3.
Contact between sooty mangabeys (SMs) and a pigtailed macaque prompted the serological screening of SMs for evidence of infection with B virus. Serological tests detected SM antibodies that reacted with B virus polypeptides. Additional testing was performed with sera from SMs with no previous contact with macaques. Results from these tests indicated that 56% (33/59) of the SMs had antibodies that reacted with B virus and SA8. SM antibodies also reacted with herpesvirus papio 2 and to a lesser extent with human alpha herpesviruses (HSV-1 and HSV-2). There was an age-related increase in the presence of these antibodies in SMs that was consistent with the serological pattern of reactivity observed in other nonhuman primate species infected with alpha herpesviruses. These data suggest that SMs may be a host for a herpesvirus that is antigenically similar to those viruses present in other Old World nonhuman primates.  相似文献   

4.
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.  相似文献   

5.
Src homology phosphotyrosyl phosphatase 2 (Shp‐2) is a ubiquitously expressed protein that is involved in a variety of cellular processes, including antiviral interferon signalling pathways. In this study, we investigated the role of Shp‐2 in the host cell interactions of human respiratory syncytial virus (RSV). We report significant changes in the expression of Shp‐2 in human pulmonary alveolar epithelial cells (A549) upon RSV infection. We also report that blocking Shp‐2 does not affect viral replication or virus‐induced interferon‐alpha (IFN‐α) production. Interestingly, whereas A549 cells were activated by IFN‐α, the blocking of Shp‐2 resulted in increased viral replication that was associated with the reduced expression of the IFN‐stimulated genes of 2′,5′‐oligoadenylate synthetases and Mx1, and the concomitant inhibition of Stat1 tyrosine phosphorylation. Our findings suggest that Shp‐2 contributes to the control of RSV replication and progeny production in pulmonary alveolar epithelial cells by interfering with IFN‐α‐induced Jak/Stat1 pathway activation rather than by affecting the production of IFN‐α itself.  相似文献   

6.
The paramyxovirus pneumonia virus of mice (PVM) is a rodent model of human respiratory syncytial virus (hRSV) pathogenesis. Here we characterized the PVM-specific CD8+ T-cell repertoire in susceptible C57BL/6 mice. In total, 15 PVM-specific CD8+ T-cell epitopes restricted by H-2Db and/or H-2Kb were identified. These data open the door for using widely profiled, genetically manipulated C57BL/6 mice to study the contribution of epitope-specific CD8+ T cells to PVM pathogenesis.  相似文献   

7.
The amount of passively acquired serum respiratory syncytial virus (RSV)-neutralizing antibodies required to protect the respiratory tract of cotton rats against infection was studied. Infant cotton rats were inoculated intraperitoneally with various dilutions of a single pool of sera derived from cotton rats convalescent from RSV infection. After 24 h, these animals were inoculated with RSV intranasally. Virus replication in the respiratory tract was suppressed in cotton rats which had a serum neutralizing antibody titer of 1:100 or greater. Resistance was greater in the lungs than in the nose. Complete or almost complete resistance in the lungs was observed in cotton rats with a serum neutralizing antibody titer of 1:380 or greater. The level of serum RSV-neutralizing antibodies required to confer significant resistance to infection in the cotton rat was similar to the level of maternally derived serum antibodies possessed by human infants less than 2 months of age, who as a group exhibit relative resistance to RSV disease compared with infants 2 to 6 months of age.  相似文献   

8.
Abstract: There are relatively few monoclonal antibodies (mAb) that have been characterized for their applicability in studies on the immune system of various nonhuman primates. In the present study, we identified a large number of mAb that can be used in future immunological studies in three different nonhuman primates, i.e., chimpanzees, rhesus macaques, and squirrel monkeys. The reactivity of 161 anti-human mAb to T-cell antigens and cytokine receptors were tested on peripheral blood mononuclear cells (PBMC) from the three primate species by flow cytometric analysis. A total of 105 (65%), 73 (45%), and 68 (42%) antibodies reacted with PBMC from chimpanzees, rhesus macaques, and squirrel monkeys, respectively. Out of the 161 mAb, 38 reacted with all three species and 112 reacted with one or two of the species. No specific reaction was observed with mAb to receptors to GM-CSF, 4–1BB, FLT3, FLX2, common β-chain, IL-1 (type I receptor), and IL-8.  相似文献   

9.
We identified several types of neutralization effected by F and G protein monoclonal antibodies (MAbs) reacted individually or as mixtures against respiratory syncytial virus (RSV). Neutralizing activity was identified by a microneutralization test in which virus replication was determined by enzyme immunoassay. Complete neutralization was seen only with MAbs against the F protein. Strain-specific neutralization, complete neutralization against some strains of RSV, and no neutralization against other strains were seen with an additional MAb against the F protein. Partial neutralization, virus replication significantly reduced but still present, and no neutralization were seen with MAbs against both the F and G proteins. Enhanced neutralization, enhanced efficacy of neutralization, or increased neutralizing titer with a mixture of two MAbs over that for the individual MAbs was seen with all MAbs against the F protein and all but three MAbs against the G protein. Most (10 of 13) of the MAbs that exhibited neutralizing activity reacted with some but not all strains of RSV in an enzyme immunoassay. The epitopes corresponding to these 10 MAbs probably contribute to the strain-specific component of the neutralizing antibody response to RSV. Our results suggest that interpretation of RSV neutralization with MAbs is complex and that studies of such neutralization should include mixtures of MAbs and multiple RSV strains.  相似文献   

10.
The growth properties and antigenic relatedness of the CAN98-75 (CAN75) and the CAN97-83 (CAN83) human metapneumovirus (HMPV) strains, which represent the two distinct HMPV genetic lineages and exhibit 5 and 63% amino acid divergence in the fusion (F) and attachment (G) proteins, respectively, were investigated in vitro and in rodents and nonhuman primates. Both strains replicated to high titers (> or =6.0 log(10)) in the upper respiratory tract of hamsters and to moderate titers (> or =3.6 log(10)) in the lower respiratory tract. The two lineages exhibited 48% antigenic relatedness based on reciprocal cross-neutralization assay with postinfection hamster sera, and infection with each strain provided a high level of resistance to reinfection with the homologous or heterologous strain. Hamsters immunized with a recombinant human parainfluenza virus type 1 expressing the fusion F protein of the CAN83 strain developed a serum antibody response that efficiently neutralized virus from both lineages and were protected from challenge with either HMPV strain. This result indicates that the HMPV F protein is a major antigenic determinant that mediates extensive cross-lineage neutralization and protection. Both HMPV strains replicated to low titers in the upper and lower respiratory tracts of rhesus macaques but induced high levels of HMPV-neutralizing antibodies in serum effective against both lineages. The level of HMPV replication in chimpanzees was moderately higher, and infected animals developed mild colds. HMPV replicated the most efficiently in the respiratory tracts of African green monkeys, and the infected animals developed a high level of HMPV serum-neutralizing antibodies (1:500 to 1:1,000) effective against both lineages. Reciprocal cross-neutralization assays in which postinfection sera from all three primate species were used indicated that CAN75 and CAN83 are 64 to 99% related antigenically. HMPV-infected chimpanzees and African green monkeys were highly protected from challenge with the heterologous HMPV strain. Taken together, the results from hamsters and nonhuman primates support the conclusion that the two HMPV genetic lineages are highly related antigenically and are not distinct antigenic subtypes or subgroups as defined by reciprocal cross-neutralization in vitro.  相似文献   

11.
Bovine respiratory syncytial virus (BRSV) escapes from cellular responses to alpha/beta interferon (IFN-alpha/beta) by a concerted action of the two viral nonstructural proteins, NS1 and NS2. Here we show that the NS proteins of human RSV (HRSV) are also able to counteract IFN responses and that they have the capacity to protect replication of an unrelated rhabdovirus. Even combinations of BRSV and HRSV NS proteins showed a protective activity, suggesting common mechanisms and cellular targets of HRSV and BRSV NS proteins. Although able to cooperate, NS proteins from BRSV and HRSV showed differential protection capacity in cells from different hosts. A chimeric BRSV with HRSV NS genes (BRSV h1/2) was severely attenuated in bovine IFN competent MDBK and Klu cells, whereas it replicated like BRSV in IFN-incompetent Vero cells or in IFN-competent human HEp-2 cells. After challenge with exogenous IFN-alpha, BRSV h1/2 was better protected than wild-type BRSV in human HEp-2 cells. In contrast, in cells of bovine origin, BRSV h1/2 was much less resistant to exogenous IFN than wild-type BRSV. These data demonstrate that RSV NS1 and NS2 proteins are major determinants of host range. The differential IFN escape capacity of RSV NS proteins in cells from different hosts provides a basis for rational development of attenuated live RSV vaccines.  相似文献   

12.
Hepatitis A virus (HAV) can infect not only humans but also several other nonhuman primates. This study has been conducted to evaluate the comprehensive anti-HAV seroprevalence in captive nonhuman primate populations in Thailand. The prevalence of antibodies against HAV in 96 captive nonhuman primates of 11 species was evaluated by competitive enzyme immunoassay (EIA). HAV antibodies were found in 64.7% (11/17) of macaques, 85.7% (6/7) of langurs, 28.4% (10/35) of gibbons, and 94.6% (35/37) of orangutans. However, anti-HAV IgM was not found in any sera. These results indicate that the majority of captive nonhuman primates in Thailand were exposed to HAV. It is possible that some of the animals were infected prior to capture.  相似文献   

13.
In young infants who possess maternally derived respiratory syncytial virus (RSV) antibodies, the antibody response to RSV glycoproteins is relatively poor, despite extensive replication of RSV. In the present study, it was found that cotton rat RSV hyperimmune antiserum suppressed the antibody response to the RSV glycoproteins but not the response to vaccinia virus antigens when the antiserum was passively transferred to cotton rats prior to infection with vaccinia recombinant viruses expressing the RSV envelope glycoproteins. The cotton rats which had their immune responses suppressed by passively transferred antibodies were more susceptible to infection with RSV than were animals inoculated with control serum lacking RSV antibodies. Furthermore, many of the immunosuppressed animals infected with the vaccinia recombinant viruses developed RSV glycoprotein antibodies which had abnormally low neutralizing activities. Thus, preexisting serum RSV antibodies had dramatic quantitative and qualitative effects on the immune response to RSV glycoproteins, which may explain, in part, the poor RSV antibody response of young human infants to infection with RSV. Our observations also suggest that immunosuppression by preexisting, passively acquired RSV antibodies may constitute a major obstacle to RSV immunoprophylaxis during early infancy, when immunization is most needed.  相似文献   

14.
Alpha interferon (IFN-alpha) and IFN-gamma are able to suppress hepadnavirus replication. The intrahepatic expression of high levels of IFN may enhance the antiviral activity. We investigated the effects of woodchuck-specific IFN-alpha (wIFN-alpha) and IFN-gamma(wIFN-gamma) on woodchuck hepatitis virus (WHV) replication in vivo by helper-dependent adenoviral (HD-Ad) vector-mediated gene transfer. The expression of biologically active IFNs was demonstrated in vitro after transduction of woodchuck cells with HD-Ad vectors encoding wIFN-alpha (HD-AdwIFN-alpha) or wIFN-gamma (HD-AdwIFN-gamma). The transduction efficacy of the HD-Ad vector in woodchuck liver in vivo was tested with a vector expressing green fluorescence protein (GFP). Immunohistochemical staining of liver samples on day 5 after injection showed expression of GFP in a high percentage of liver cells surrounding the central vein. The transduction of livers of WHV carriers in vivo with HD-AdwIFN-alpha or HD-AdwIFN-gamma induced levels of biologically active IFN, which could be measured in the sera of these animals. Expression of wIFN-alpha in the liver reduced intrahepatic WHV replication and WHV DNA in sera of about 1 log step in two of two woodchucks. Transduction with HD-AdwIFN-gamma, however, reduced WHV replicative intermediates only slightly in two of three animals, which was not accompanied with significant changes in the WHV DNA in sera. We demonstrated for the first time the successful HD-Ad vector-mediated transfer of genes for IFN-alpha and IFN-gamma in vivo and timely limited reduction of WHV replication by wIFN-alpha, but not by wIFN-gamma.  相似文献   

15.
Toll-like receptors (TLR) are an important component in the innate immune response to a wide variety of pathogens. Recently, a series of studies has addressed the hypothesis that TLR4 also participates in the host innate response against respiratory syncytial virus (RSV), the leading cause of lower respiratory tract infections in infants and young children. In most of the studies available, RSV, which is not a natural pathogen of mice, has been systematically used in mouse models of human bronchiolitis, with conflicting results. Pneumonia virus of mice (PVM), a member of the pneumovirus genus, shares many similarities with RSV. The serological and structural relationships that exist between them suggest that the immune response to these viruses may be similar in their respective natural hosts. To determine the role of TLR4 in host defense against PVM, TLR4-competent and TLR4-deficient mice were intranasally infected with PVM. Variation of body weight, pulmonary function values, histopathology, and pulmonary viral loads were analyzed. None of the investigated clinical, functional, histological and virological parameters was different between strains, which demonstrates that the sensitivity of the mouse to its natural pneumovirus infection is independent of the presence or absence of TLR4 sensing.  相似文献   

16.
Pneumonia virus of mice (PVM) strain 15 causes fatal pneumonia in mice and provides a convenient model for human respiratory syncytial virus pathogenesis and immunobiology. We prepared PVM mutants lacking the genes for nonstructural proteins NS1 and/or NS2. In Vero cells, which lack type I interferon (IFN), deletion of these proteins had no effect on the efficiency of virus growth. In IFN-competent mouse embryo fibroblasts, wild-type (wt) PVM and the ΔNS1 virus grew efficiently and strongly inhibited the IFN response, whereas virus lacking NS2 was highly attenuated and induced high levels of IFN and IFN-inducible genes. In BALB/c mice, intranasal infection with wt PVM caused overt disease that began on day 6 and was lethal by day 9 postinoculation. In comparison, ΔNS1 induced transient, reduced disease, and ΔNS2 and ΔNS12 caused no disease. Thus, NS1 and NS2 are virulence factors, with NS2 being a major antagonist of the type I IFN system. The pulmonary titers of wt PVM and ΔNS1 were high on day 3 and increased further by day 6; in addition, expression of IFN and representative proinflammatory cytokines/chemokines and T lymphocyte-related cytokines was undetectable on day 3 but increased dramatically by day 6 coincident with the onset of disease. The titers of ΔNS2 and ΔNS12 were somewhat lower on day 3 and decreased further by day 6; in addition, these viruses induced a more circumscribed set of cytokines/chemokines (IFN, interleukin-6 [IL-6], and CXCL10) that were detected on day 3 and had largely subsided by day 6. Lung immunohistology revealed abundant PVM-positive pneumocytes and bronchial and bronchiolar epithelial cells in wt PVM- and ΔNS1-infected mice on day 6 compared to few PVM-positive foci with ΔNS2 and ΔNS12. These results indicate that severe PVM disease is associated with high, poorly controlled virus replication driving the expression of high levels of pulmonary IFN and a broad array of cytokines/chemokines. In contrast, in the absence of NS2, there was an early, transient innate response involving moderate levels of IFN, IL-6, and CXCL10 that restricted virus replication and prevented disease.  相似文献   

17.
Gene therapy vectors based on adeno-associated virus type 1   总被引:19,自引:0,他引:19       下载免费PDF全文
The complete sequence of adeno-associated virus type 1 (AAV-1) was defined. Its genome of 4,718 nucleotides demonstrates high homology with those of other AAV serotypes, including AAV-6, which appears to have arisen from homologous recombination between AAV-1 and AAV-2. Analysis of sera from nonhuman and human primates for neutralizing antibodies (NAB) against AAV-1 and AAV-2 revealed the following. (i) NAB to AAV-1 are more common than NAB to AAV-2 in nonhuman primates, while the reverse is true in humans; and (ii) sera from 36% of nonhuman primates neutralized AAV-1 but not AAV-2, while sera from 8% of humans neutralized AAV-2 but not AAV-1. An infectious clone of AAV-1 was isolated from a replicated monomer form, and vectors were created with AAV-2 inverted terminal repeats and AAV-1 Rep and Cap functions. Both AAV-1- and AAV-2-based vectors transduced murine liver and muscle in vivo; AAV-1 was more efficient for muscle, while AAV-2 transduced liver more efficiently. Strong NAB responses were detected for each vector administered to murine skeletal muscle; these responses prevented readministration of the same serotype but did not substantially cross-neutralize the other serotype. Similar results were observed in the context of liver-directed gene transfer, except for a significant, but incomplete, neutralization of AAV-1 from a previous treatment with AAV-2. Vectors based on AAV-1 may be preferred in some applications of human gene therapy.  相似文献   

18.
人呼吸道合胞病毒(human respiratory syncytial virus, RSV)基质蛋白(matrix protein,M)在RSV形态发生上具有重要作用,因含有CTL抗原表位,在疫苗研究上具有一定意义。为此,应用RT-PCR 方法从感染RSV的HEp-2 细胞中扩增获得M蛋白基因,构建了含M基因的非复制型重组腺病毒并进行表达和鉴定。基因序列分析显示RSV M基因仅有一处碱基发生错义突变。非复制型重组腺病毒DNA分子FGAd/RSVM转染293细胞,观察到细胞出现CPE,RT-PCR发现M基因有转录,Western blotting及间接免疫荧光分析检测到M蛋白。成功克隆A亚型RSV Long株M基因,并获得一株可表达A亚型RSV M蛋白的非复制型重组腺病毒FGAd/RSVM,可用于体内研究观察其免疫效果及免疫保护作用。  相似文献   

19.
The degree of antigenic relatedness between human respiratory syncytial virus (RSV) subgroups A and B was estimated from antibody responses induced in cotton rats by respiratory tract infection with RSV. Glycoprotein-specific enzyme-linked immunosorbent assays of antibody responses induced by RSV infection demonstrated that the F glycoproteins of subgroups A and B were antigenically closely related (relatedness, R approximately 50%), whereas the G glycoproteins were only distantly related (R approximately 5%). Intermediate levels of antigenic relatedness (R approximately 25%) were seen in neutralizing antibodies from cotton rats infected with RSV of the two subgroups. Immunity against the F glycoprotein of subgroup A, induced by vaccinia-A2-F, conferred a high level of protection which was of comparable magnitude against challenge by RSV of either subgroup. In comparison, immunity against the G glycoprotein of subgroup A, induced by vaccinia-A2-G, conferred less complete, but significant, protection. Importantly, in vaccinia-A2-G-immunized animals, suppression of homologous challenge virus replication was significantly greater (13-fold) than that observed for the heterologous virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号