首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
L Shen  SH Kim  CY Chen 《PloS one》2012,7(7):e40435
Pancreatic cancer is a devastating human malignancy and gain of functional mutations in K-ras oncogene is observed in 75%-90% of the patients. Studies have shown that oncogenic ras is not only able to promote cell growth or survival, but also apoptosis, depending upon circumstances. Using pancreatic cancer cell lines with or without expressing mutated K-ras, we demonstrated that the inhibition of endogenous PKC activity sensitized human pancreatic cancer cells (MIA and PANC-1) expressing mutated K-ras to apoptosis, which had no apoptotic effect on BxPC-3 pancreatic cancer cells that contain a normal Ras as well as human lung epithelial BAES-2B cells. In this apoptotic process, the level of ROS was increased and PUMA was upregulated in a p73-dependent fashion in MIA and PANC-1 cells. Subsequently, caspase-3 was cleaved. A full induction of apoptosis required the activation of both ROS- and p73-mediated pathways. The data suggest that PKC is a crucial factor that copes with aberrant K-ras to maintain the homeostasis of the pancreatic cancer cells harboring mutated K-ras. However, the suppression or loss of PKC disrupts the balance and initiates an apoptotic crisis, in which ROS and p73 appear the potential, key targets.  相似文献   

3.
4.
5.
Cancer stem cells play an important role in metastasis and the relapse of drug resistant cancers. Side-population (SP) cells are capable of effluxing Hoechst 33342 dye and are referred to as cancer stem cells. We investigated the effect of berberine on pancreatic cancer stem cells of PANC-1 and MIA PaCa-2. For both cell lines, the proportions of SP cells in the presence of berberine were investigated and compared to the proportions in the presence of gemcitabine, a standard pancreatic anti-cancer drug. The proportions of SP cells in the PANC-1 and MIA PaCa-2 cell lines were about 9 and <0.1 %, respectively. After berberine and gemcitabine treatments, the SP cell proportion of PANC-1 decreased to 5.7 ± 2.0 and 6.8 ± 0.8 %, respectively, which compares to the control proportion of (9.7 ± 1.7). After berberine and gemcitabine treatment of PANC-1, of the four stem cell-associated genes (SOX2, POU5F1, NANOG, and NOTCH1), all but NOTCH1 were down-regulated. Unfortunately, the effect of berberine and gemcitabine treatments on MIA PaCa-2 SP cells could not be clearly observed because SP cells represented only a very small proportion of MIA PaCa-2 cells. However, SOX2, POU5F1, and NANOG genes were shown to be effectively down-regulated in the MIA PaCa-2 cell line as a whole. Taken together, these results indicate that berberine is as effective at targeting pancreatic cancer cell lines as gemcitabine. Therefore, we believe that POU5F1, SOX2, and NANOG can serve as potential markers, and berberine may be an effective anti-cancer agent when targeting human pancreatic cancer cells and/or their cancer stem cells.  相似文献   

6.
7.
We have discovered several tubulin-active compounds in our previous studies. In the establishment of a compound library of small molecule weight tubulin ligands, 14 new N-3-haloacylaminophenyl-N′-(alkyl/aryl) urea analogs were designed and synthesized. The structure–activity relationship (SAR) analysis revealed that (i) the order of anticancer potency for the 3-haloacylamino chain was following –CH2Br > –CHBrCH3; (ii) the N′-substituent moiety was not essential for the anticancer activity, and a proper alkyl substitution might enhance the anticancer activity. Among these analogs, the compounds 16j bearing bromoacetyl at the N′-end exhibited a potent activity against eight human tumor cell lines, including CEM (leukemia), Daudi (lymphoma), MCF-7 (breast cancer), Bel-7402 (hepatoma), DU-145 (prostate cancer), DND-1A (melanoma), LOVO (colon cancer) and MIA Paca (pancreatic cancer), with the IC50 values between 0.38 and 4.07 μM. Interestingly, compound 16j killed cancer cells with a mechanism independent of the tubulin-based mechanism, indicating a significant change of the action mode after the structure modification.  相似文献   

8.
9.
The effective treatment for pancreatic carcinoma remains critically needed. Herein, this current study showed that spiclomazine treatment caused a reduction in viability in pancreatic carcinoma cell lines CFPAC-1 and MIA PaCa-2 in vitro. It was notable in this regard that, compared with pancreatic carcinoma cells, normal human embryonic kidney (HEK-293) and liver (HL-7702) cells were more resistant to the antigrowth effect of spiclomazine. Biochemically, spiclomazine treatment regulated the expression of protein levels in the apoptosis related pathways. Consistent with this effect, spiclomazine reduced the mitochondria membrane potential, elevated reactive oxygen species, and activated caspase-3/9. In addition, a key finding from this study was that spiclomazine suppressed migration and invasion of cancer cells through down-regulation of MMP-2/9. Collectively, the proposed studies did shed light on the antiproliferation effect of spiclomazine on pancreatic carcinoma cell lines, and further clarified the mechanisms that spiclomazine induced apoptosis associated with the suppression of migration and invasion.  相似文献   

10.
Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh) and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2) and cell cycle (cyclin D1, CDK2, and CDK6), and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax). In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8), and metastasis (MMP-2 and MMP-9) in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT) by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and Shh pathways, and can be developed for the treatment and/or prevention of pancreatic cancer.  相似文献   

11.
MicroRNA miR-376c was expressed in normal intrahepatic biliary epithelial cells (HIBEpiC), but was significantly suppressed in the HuCCT1 intrahepatic cholangiocarcinoma (ICC) cell line. The biological significance of the down-regulation of miR-376c in HuCCT1 cells is unknown. We hypothesized that miR-376c could function as a tumor suppressor in these cells. To test this hypothesis, we sought the targets of miR-376c, and characterized the effect of its down-regulation on HuCCT1 cells. We performed proteomic analysis of miR-376c-overexpressing HuCCT1 cells to identify candidate targets of miR-376c, and validated these targets by 3′-UTR reporter assay. Transwell migration assays were performed to study the migratory response of HuCCT1 cells to miR-376c overexpression. Furthermore, microarrays were used to identify the signaling that were potentially involved in the miR-376c-modulated migration of HuCCT1. Finally, we assessed epigenetic changes within the potential promoter region of the miR-376c gene in these cells. Proteomic analysis and subsequent validation assays showed that growth factor receptor-bound protein 2 (GRB2) was a direct target of miR-376c. The transwell migration assay revealed that miR-376c significantly reduced epidermal growth factor (EGF)-dependent cell migration in HuCCT1 cells. DNA microarray and subsequent pathway analysis showed that interleukin 1 beta and matrix metallopeptidase 9 were possible participants in EGF-dependent migration of HuCCT1 cells. Bisulfite sequencing showed higher methylation levels of CpG sites upstream of the miR-376c gene in HuCCT1 relative to HIBEpiC cells. Combined treatment with the DNA-demethylating agent 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor trichostatin A significantly upregulated the expression of miR-376c in HuCCT1 cells. We revealed that epigenetic repression of miR-376c accelerated EGF-dependent cell migration through its target GRB2 in HuCCT1 cells. These findings suggest that miR-376c functions as a tumor suppressor. Since metastasis is the major cause of death in ICC, microRNA manipulation could lead to the development of novel anti-cancer therapy strategies for ICC.  相似文献   

12.
Neurotensin (NT) and epidermal growth factor (EGF) induced rapid extracellular-regulated protein kinase (ERK) activation through different signaling pathways in the K-Ras mutated human pancreatic carcinoma cell lines PANC-1 and MIA PaCa-2. NT stimulated ERK activation via a protein kinase C (PKC)-dependent (but EGF receptor-independent) pathway in PANC-1 and MIA PaCa-2 cells, whereas EGF promoted ERK activation through a PKC-independent pathway in these cells. Concomitant stimulation of these cells with NT and EGF induced a striking increase in the duration of ERK pathway activation as compared with that obtained in cells treated with each agonist alone. Stimulation with NT + EGF promoted synergistic stimulation of DNA synthesis and anchorage-independent growth. Addition of the MEK inhibitor U0126, either prior to stimulation with NT + EGF or 2 h after stimulation with NT + EGF prevented the synergistic increase in DNA synthesis and suppressed the sustained phase of ERK activation. Furthermore, treatment with the selective PKC inhibitor GF-1 converted the sustained ERK activation in response to NT and EGF into a transient signal and also abrogated the synergistic increase in DNA synthesis. Collectively, our results suggest that the sustained phase of ERK signaling mediates the synergistic effects of NT and EGF on DNA synthesis in pancreatic cancer cells.  相似文献   

13.
One reason why pancreatic cancer is so aggressive and unresponsive to treatments is its resistance to apoptosis. We report here that reactive oxygen species (ROS) are a prosurvival, antiapoptotic factor in pancreatic cancer cells. Human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cells generated ROS, which was stimulated by growth factors (serum, insulin-like growth factor I, or fibroblast growth factor-2). Growth factors also stimulated membrane NAD(P)H oxidase activity in these cells. Both intracellular ROS and NAD(P)H oxidase activity were inhibited by antioxidants tiron and N-acetylcysteine and the inhibitor of flavoprotein-dependent oxidases, diphenylene iodonium, but not by inhibitors of various other ROS-generating enzymes. Using Rho(0) cells deficient in mitochondrial DNA, we showed that a nonmitochondrial NAD(P)H oxidase is a major source of growth factor-induced ROS in pancreatic cancer cells. Among proteins that have been implicated in NAD(P)H oxidase activity, MIA PaCa-2 and PANC-1 cells do not express the phagocytic gp91(phox) subunit but express several nonphagocytic oxidase (NOX) isoforms. Transfection with Nox4 antisense oligonucleotide inhibited NAD(P)H oxidase activity and ROS production in MIA PaCa-2 and PANC-1 cells. Inhibiting ROS with the antioxidants, Nox4 antisense, or MnSOD overexpression all stimulated apoptosis in pancreatic cancer cells as measured by internucleosomal DNA fragmentation, phosphatidylserine externalization, cytochrome c release, and effector caspase activation. The results show that growth factor-induced ROS produced by NAD(P)H oxidase (probably Nox4) protect pancreatic cancer cells from apoptosis. This mechanism may play an important role in pancreatic cancer resistance to treatment and thus represent a novel therapeutic target.  相似文献   

14.
BACKGROUND AND AIMS: Growth factors are well known for their participation in the regulation of cell proliferation and survival. However, the intracellular signaling pathways by which growth factors promote survival are still poorly understood. In the present study, using the MIA PaCa-2 cell line, a well-established model of pancreatic cancer cells, we analyzed the roles of ERK1/2 activities in the regulation of cell survival and investigated some of the mechanisms involved. METHODS: The ability of the MEK inhibitor PD98059 to modulate survival of the MIA PaCa-2 cells was evaluated, and the responses were correlated with expression of Bcl-2 homologs and caspases 1, 3, 6, 8, and 9 activities. RESULTS: Herein, we showed that inhibition of ERK1/2 activities caused (1) a G1 arrest; (2) a down-regulation of the expression levels of the anti-apoptotic homologs Bcl-2, Mcl-1, and Bcl-X(L) without affecting the pro-apoptotic levels of Bax and Bak; (3) a promotion of caspases 3, 6, 8, and 9 activities; (4) a stimulation of PARP cleavage; and (5) a programmed cell death by apoptosis. CONCLUSION: Our data suggest that activation of the ERK pathway functions to protect pancreatic tumor cells from apoptosis as well as to regulate their progression in the cell cycle.  相似文献   

15.
Yang  Gang  Wang  Huanyu  Feng  Mengyu  You  Lei  Zheng  Lianfang  Zhang  Taiping  Cong  Lin  Zhao  Yupei 《中国科学:生命科学英文版》2019,62(6):791-806
Pancreatic cancer is one of the most lethal human malignancies, partly because of its propensity for metastasis. However, highly metastatic human pancreatic cancer cell lines suitable for studies of metastasis are currently lacking. Here we established two highly metastatic human pancreatic cancer cell lines, MIA PaCa-2 In8 and Panc-1 In8, by Matrigel induction assay. The cell lines were further characterized both in vitro and in vivo. MIA PaCa-2 In8 and Panc-1 In8 cells demonstrated increased migration and invasion compared with their respective parental cells. Following injection into nude mice, MIA PaCa-2 In8 and Panc-1 In8 cells resulted in more pulmonary metastases compared with the parental cells. Furthermore, analyses of m RNA, long non-coding RNA, micro RNA, and methylation profiling revealed that these factors were aberrantly regulated in the highly metastatic cells,indicating that they probably affected metastasis. We thus established and characterized two highly metastatic human pancreatic cell lines that could be used as valuable tools for future investigations into the pathogenesis, metastasis, and potential treatment of human pancreatic cancer.  相似文献   

16.
Pancreatic carcinoma is the major clinical entity where the nucleoside analog gemcitabine is used for first-line therapy. Overcoming cellular resistance toward gemcitabine remains a major challenge in this context. This raises the need to identify factors that determine gemcitabine sensitivity in pancreatic carcinoma cells. We previously found the MAPK-activated protein kinase 2 (MK2), part of the p38/MK2 stress response pathway, to be required for DNA replication fork stalling when osteosarcoma-derived cells were treated with gemcitabine. As a consequence, inhibition or depletion of MK2 protects these cells from gemcitabine-induced death (Köpper, et al. Proc Natl Acad Sci USA 2013; 110:16856–61). Here, we addressed whether MK2 also determines the sensitivity of pancreatic cancer cells toward gemcitabine. We found that MK2 inhibition reduced the intensity of the DNA damage response and enhanced survival of the pancreatic cancer cell lines BxPC-3, MIA PaCa-2, and Panc-1, which display a moderate to strong sensitivity to gemcitabine. In contrast, MK2 inhibition only weakly attenuated the DNA damage response intensity and did not enhance long-term survival in the gemcitabine-resistant cell line PaTu 8902. Importantly, in BxPC-3 and MIA PaCa-2 cells, inhibition of MK2 also rescued increased H2AX phosphorylation caused by inhibition of the checkpoint kinase Chk1 in the presence of gemcitabine. These results indicate that MK2 mediates gemcitabine efficacy in pancreatic cancer cells that respond to the drug, suggesting that the p38/MK2 pathway represents a determinant of the efficacy by that gemcitabine counteracts pancreatic cancer.  相似文献   

17.
Checkpoint kinase 2 (CHK2) plays pivotal function as an effector of cell cycle checkpoint arrest following DNA damage. Recently, we found that co‐treatment of NSC109555 (a potent and selective CHK2 inhibitor) potentiated the cytotoxic effect of gemcitabine (GEM) in pancreatic cancer MIA PaCa‐2 cells. Here, we further examined whether NSC109555 could enhance the antitumour effect of GEM in pancreatic adenocarcinoma cell lines. In this study, the combination treatment of NSC109555 plus GEM demonstrated strong synergistic antitumour effect in four pancreatic cancer cells (MIA PaCa‐2, CFPAC‐1, Panc‐1 and BxPC‐3). In addition, the GEM/NSC109555 combination significantly increased the level of intracellular reactive oxygen species (ROS), accompanied by induction of apoptotic cell death. Inhibition of ROS generation by N‐acetyl cysteine (NAC) significantly reversed the effect of GEM/NSC109555 in apoptosis and cytotoxicity. Furthermore, genetic knockdown of CHK2 by siRNA enhanced GEM‐induced apoptotic cell death. These findings suggest that inhibition of CHK2 would be a beneficial therapeutic approach for pancreatic cancer therapy in clinical treatment.  相似文献   

18.
In a recent study, we showed that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two common omega‐3 fatty acids, can cause ROS accumulation and subsequently induce caspase‐8‐dependent apoptosis in human breast cancer cells (Kang et al. [2010], PLoS ONE 5: e10296). In this study, we showed that the pancreas has a unique ability to accumulate EPA at a level markedly higher than several other tissues analyzed. Based on this finding, we sought to further investigate the anticancer actions of EPA and its analog DHA in human pancreatic cancer cells using both in vitro and in vivo models. EPA and DHA were found to induce ROS accumulation and caspase‐8‐dependent cell death in human pancreatic cancer cells (MIA‐PaCa‐2 and Capan‐2) in vitro. Feeding animals with a diet supplemented with 5% fish oil, which contains high levels of EPA and DHA, also strongly suppresses the growth of MIA‐PaCa‐2 human pancreatic cancer xenografts in athymic nude mice, by inducing oxidative stress and cell death. In addition, we showed that EPA can concomitantly induce autophagy in these cancer cells, and the induction of autophagy diminishes its ability to induce apoptotic cell death. It is therefore suggested that combination of EPA with an autophagy inhibitor may be a useful strategy in increasing the therapeutic effectiveness in pancreatic cancer. J. Cell. Biochem. 114: 192–203, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.

Introduction

Pancreatic cancer is an aggressive cancer and its prognosis remains poor. Therefore, additional effective therapy is required to augment and/or complement current therapy. CD147, high expression in pancreatic cancer, is involved in the metastatic process and is considered a good candidate for targeted therapy. CD147-specfic imaging could be useful for selection of appropriate patients. Therefore, we evaluated the potential of a fully human anti-CD147 monoclonal antibody 059-053 as a new positron emission tomography (PET) probe for pancreatic cancer.

Methods

CD147 expression was evaluated in four pancreatic cancer cell lines (MIA Paca-2, PANC-1, BxPC-3, and AsPC-1) and a mouse cell line A4 as a negative control. Cell binding, competitive inhibition and internalization assays were conducted with 125I-, 67Ga-, or 89Zr-labeled 059-053. In vivo biodistribution of 125I- or 89Zr-labeled 059-053 was conducted in mice bearing MIA Paca-2 and A4 tumors. PET imaging with [89Zr]059-053 was conducted in subcutaneous and orthotopic tumor mouse models.

Results

Among four pancreatic cancer cell lines, MIA Paca-2 cells showed the highest expression of CD147, while A4 cells had no expression. Immunohistochemical staining showed that MIA Paca-2 xenografts also highly expressed CD147 in vivo. Radiolabeled 059-053 specifically bound to MIA Paca-2 cells with high affinity, but not to A4. [89Zr]059-053 uptake in MIA Paca-2 tumors increased with time from 11.0±1.3% injected dose per gram (ID/g) at day 1 to 16.9±3.2% ID/g at day 6, while [125I]059-053 uptake was relatively low and decreased with time, suggesting that 059-053 was internalized into tumor cells in vivo and 125I was released from the cells. PET with [89Zr]059-053 clearly visualized subcutaneous and orthotopic tumors.

Conclusion

[89Zr]059-053 is a promising PET probe for imaging CD147 expression in pancreatic cancer and has the potential to select appropriate patients with CD147-expressing tumors who could gain benefit from anti-CD147 therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号